This study aimed to evaluate the bitterness of famotidine (FAM) combined with each of three nonsteroidal anti-inflammatory drugs (NSAIDs): ibuprofen (IBU), flurbiprofen (FLU), and naproxen (NAP), which have potential as fixed-dose combination (FDC) drugs. We evaluated the bitterness of FAM and each NSAID by taste sensor AN0 and C00, respectively. FAM showed high sensor output representing sensitivity to bitterness, whereas three NSAIDs did not show large sensor output, suggesting that the bitterness intensities of three NSAIDs were lower than that of FAM. The bitterness of FAM on sensor AN0 was suppressed in a concentration-dependent manner when mixed with IBU, FLU, or NAP. Among three NSAIDs, IBU most effectively inhibited bitterness on sensor output, and the gustatory sensation test confirmed that adding IBU to FAM reduced the bitterness of FAM in a concentration-dependent manner. MarvinSketch confirmed that the drugs were mostly present in an ionic solution when FAM was mixed with NSAIDs. The 1 H-NMR spectroscopy analysis also revealed the presence of electrostatic interactions between FAM and NSAIDs, suggesting that the electrostatic interaction between FAM and NSAIDs might inhibit the adsorption of FAM on the bitter taste sensor membrane, thereby masking the bitter taste.
Immunoblot analysis showed that uricases in non-ureide-transporting determinate nodules (Canavalia gladiata and Lotus japonicus) did not react with a monoclonal antibody against soybean nodule uricase, suggesting different immunological reactivities from those of uricases of ureide-transporting legumes.
The aim of this study was to prepare diphenhydramine hydrochloride (DPH)loaded orally fast-disintegrating mini-tablets (OFDMTs) containing either Laspartic acid (Asp) or L-glutamic acid (Glu) as bitterness-suppressant, to characterize the prepared tablets and to evaluate their bitterness under conditions mimicking those of the oral cavity. The preparation of five formulation batches of the OFDMTs involved mixing DPH, with or without two different concentrations of Asp or Glu, and a premix containing a disintegrating agent. When all ingredients were well mixed, the mixture was directly compacted to form small (4 mm diameter) DPH-loaded OFDMTs. There were only small differences between the tablets with respect to mass, diameter, width and hardness. The disintegration times of the five formulation batches of DPH-loaded OFDMTs were measured using the OD-mate, a disintegration test apparatus in which conditions resemble those of the oral cavity. The disintegration times were all within 10 s of exposure to a medium representing the inside of the oral cavity. Rapid release profiles were observed for DPH, Asp and Glu in these dissolution tests. The taste sensor outputs of samples taken at different times (5 -30 s) from the dissolution test solutions of the four DPH-loaded OFDMTs containing Asp or Glu were significantly inhibited compared with those of control DPH-loaded OFDMT. These results suggest that the inclusion of Asp or Glu in DPH-loaded OFDMTs is sufficient to mask bitterness in the oral cavity for the first 30 s after the tablet is placed in the mouth. It is anticipated that swallowing will have taken place within 30 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.