The enantioselective synthesis of azahelicenes and S-shaped double azahelicenes has been achieved via the Au-catalyzed sequential intramolecular hydroarylation of alkynes. The use of excess AgOTf toward a Au(I) complex is crucial for this transformation. Interestingly, the circularly polarized luminescence activity of the S-shaped double azahelicenes was significantly higher than that of the azahelicenes.
The enantioselective synthesis of an aza[10]helicene, possessing two pyridone units, has been achieved by the gold-catalyzed intramolecular quadruple hydroarylation of a tetrayne. This aza[10]helicene was successfully converted into a fully aromatic aza[10]helicene, possessing two pyridine units. Structure-photophysical and chiroptical properties relationship in a series of azahelicene isomers has also been disclosed.
It has been established that a cationic rhodium(I)/BINAP complex catalyzes the cycloisomerization of 2-silylethynylphenols, leading to 3-silylbenzofurans, via 1,2-silicon migration. Similarly, the cycloisomerization of 2-silylethynylanilines, leading to 3-silylindoles, via 1,2-silicon migration was catalyzed by a cationic rhodium(I)/H8-BINAP complex.
SummaryIt has been established that a cationic gold(I)/(R)-DTBM-Segphos or (R)-BINAP complex catalyzes the atropselective intramolecular hydroarylation of alkynes leading to enantioenriched axially chiral 4-aryl-2-quinolinones and 4-arylcoumarins with up to 61% ee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.