Terminal differentiation in epidermal keratinocytes involves major biochemical changes including the expression of many new differentiation-specific genes. To further understand this process, we performed suppression-subtractive hybridization of keratinocytes cultured under high-calcium condition, known to induce differentiation in vitro. We randomly isolated 300 clones representing 90 different genes. By reverse Northern blot analyses, 20 different genes were found to be overexpressed, of which 13 were confirmed as differentially expressed genes during keratinocyte differentiation by Northern blot analysis. Of those, five genes, transglutaminase 1, keratin 6, interleukin-1 receptor antagonist, kallikrein 7, and heat shock protein 27, are known to be up-regulated during epidermal differentiation. Six genes, ferritin-L chain, ribosomal protein S6, tumor-associated calcium signal transducer 2, neuroendocrine secretory protein 55, phosphoserine aminotransferase, and neutrophil gelatinase-associated lipocalin, heretofore were not known to be up-regulated during keratinocyte differentiation. We also identified two novel genes. One of these maps to chromosome 1q21 of the epidermal differentiation complex, and its expression level was strongly increased in differentiating keratinocytes. These differentially expressed genes may provide significant opportunities for further understanding of the epidermal keratinocyte differentiation.
Four ruminally fistulated Hanwoo steers were used to determine the effects of level and degradability of dietary protein on ruminal fermentation, blood metabolites and concentration of soluble non-ammonia nitrogen (SNAN) in ruminal (RD) and omasal digesta (OD). Experiments were conducted in a 4×4 Latin square design with a 2×2 factorial arrangement of treatments. Factors were protein supplements with two ruminal crude protein (CP) degradabilities, corn gluten meal (CGM) that was low in degradability (rumendegraded protein (RDP), 23.4% CP) or soybean meal (SBM) that was high in degradability (RDP, 62.1% CP), and two feeding levels of CP (12.2 or 15.9% dry matter). Ruminal fermentation rates and plasma metabolite concentrations were determined from the RD collected at 2-h intervals and from the blood taken by jugular puncture, respectively. The SNAN fractions (free amino acid, peptide and soluble protein) in RD and OD collected at 2-h intervals were assessed by ninhydrin assay. Mean ruminal ammonia concentrations were 40.5, 74.8, 103.4 and 127.0 mg/L for low CGM, high CGM, low SBM and high SBM, respectively, with statistically significant differences (p<0.01 for CP level and p<0.001 for CP degradability). Blood urea nitrogen concentrations were increased by high CP level (p<0.001) but unaffected by CP degradability. There was a significant (p<0.05) interaction between level and degradability of CP on blood albumin concentrations. Albumin was decreased to a greater extent by increasing degradability of low CP diets (0.26 g/dl) compared with high CP diets (0.02 g/dl). Concentrations of each SNAN fraction in RD (p<0.01) and OD (p<0.05) for high CP diets were higher than those for low CP diets, except for peptides but concentrations of the sum of peptide and free amino acid in RD and OD were significantly higher (p<0.05) for high CP diets than for low CP diets. Soybean meal diets increased free amino acid and peptide concentrations in both RD (p<0.01) and OD (p<0.05) compared to CGM diets. High level and greater degradability of CP increased (p<0.001) mean concentrations of total SNAN in RD and OD. These results suggest that RDP contents, increased by higher level and degradability of dietary protein, may increase release of free amino acids, peptides and soluble proteins in the rumen and omasum from ruminal degradation and solubilization of dietary proteins. Because SNAN in OD indicates the terminal product of ruminal metabolism, increasing CP level and degradability appears to increase the amount of intestine-available nitrogen in the liquid phase.
BackgroundThe number of individuals with dementia is increasing substantially due to South Korea’s rapidly aging society. Undergraduate nursing students need to have adequate knowledge about dementia to deliver appropriate nursing services. The purpose of this study was to assess the knowledge about dementia among undergraduate nursing students.MethodsA total of 148 students ranging from freshmen to seniors at a nursing university participated in this study. Data were collected through self-reports using 12-item questionnaires with true/false responses. Knowledge levels about the general characteristics including demographic categories and dementia- related education and training were determined. Factors affecting the score of dementia knowledge were also investigated.ResultsThe average score and standard deviation for knowledge about dementia were 10.26 and 1.24 out of 12 points. They had relatively low knowledge about the “prevention and treatment” and “causes” of dementia, with overall correct rate of 78.6 % and 85.4 %, respectively. Higher level of knowledge about dementia was associated with increase in grade level (p < 0.001), experience in education on dementia (p = 0.01), previous experience in caring for people with dementia during clinical practice (p < 0.001), and acquiring information on dementia (p = 0.02). Factors that influenced knowledge about dementia included grade level and experience in caring for dementia patients during clinical practice.ConclusionsThis study showed that the level of knowledge about dementia among nursing students was reasonably good. Integrating dementia education and clinical experience into the curricula of undergraduates could improve knowledge about the causes, prevention, and treatment methods for dementia.
This study was conducted to identify marbling-related candidate genes in M. longissimus dorsi of high-and low-marbled Hanwoo. The longissimus dorsi muscles were selected for gene expression from eight Hanwoo steer carcasses based on crude fat content. In the analysis of variance, gene expression of five candidate genes, FABP4, SCD, PPARγ, Titin and Nebulin was determined to be significantly different between high-and low-marbled Hanwoo steers (P < 0.0001). The Pik-4 and CaMK II genes were also shown to have a significant effect on crude fat content (P < 0.01). In the analysis of the differential expression between high-and low marbled groups, FABP4 gene expression was approximately 2 times higher in the high marbled group relative to the low marbled group. However, the PPARγ and SCD gene were highly expressed in the low marbled group. In addition, Titin and Nebulin were highly expressed in the low marbled group when placed under relatively high shear force. Finally, the Pik-4 and CaM K II gene also displayed a high expression pattern in the low marbled group. [BMB reports 2008; 41(12): 846-851]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.