This paper concerns feature selection for computational analysis in authenticating works of art. The various features designed and extracted from art work in art forgery detection or the identification of the characteristics of art work style are valuable only when they have a meaningful influence on a given task such as classification. This paper presents features applicable to authenticating the painting style of Piet Mondrian and demonstrates meaningful features by using two supervised learning algorithms, a decision tree induction algorithm C4.5 and the Feature Generating Machine (FGM), both of which are used to select important features in the course of learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.