in mass spectrometry have enabled the investigation of various biological systems by directly analyzing diverse sets of biomolecules (i.e., proteins, lipids, and carbohydrates), thus making a significant impact on the life sciences field. Over the past decade, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely utilized as a rapid and reliable method for the identification of microorganisms. MALDI-TOF MS has come into widespread use despite its relatively low resolving power (full width at half maximum, FWHM: < 5,000) and its incompatibility with tandem MS analysis, features with which other high-resolution mass spectrometers are equipped. Microbial identification is achieved by searching databases containing mass spectra of peptides and proteins extracted from microorganisms of interest, using scoring algorithms to match analyzed spectra with reference spectra. In this paper, we give a brief overview of the diverse applications of rapid and robust MALDI-TOF MS-based techniques for microbial identification in a variety of fields, such as clinical diagnosis and environmental and food monitoring. We also describe the fundamental principles of MALDI-TOF MS. The general specifications of the two major MS-based microbial identification systems available in the global market (BioTyper® and VITEK® MS Plus) and the distribution of these instruments in Republic of Korea are also discussed. The current review provides an understanding of this emerging microbial identification and classification technology and will help bacteriologists and cell biologists take advantage of this powerful technique.
Microbial coculture to mimic the ecological habitat has been suggested as an approach to elucidate the effect of microbial interaction on secondary metabolite biosynthesis of Streptomyces. However, because of chemical complexity during coculture, underlying mechanisms are largely unknown. Here, we found that iron competition triggered antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. During coculture, M. xanthus enhanced the production of a siderophore, myxochelin, leading M. xanthus to dominate iron scavenging and S. coelicolor to experience iron-restricted conditions. This chemical competition, but not physical contact, activated the actinorhodin biosynthetic gene cluster and the branched-chain amino acid degradation pathway which imply the potential to produce precursors, along with activation of a novel actinorhodin export system. Furthermore, we found that iron restriction increased the expression of 21 secondary metabolite biosynthetic gene clusters (smBGCs) in other Streptomyces species. These findings suggested that the availability for key ions stimulates specific smBGCs, which had the potential to enhance secondary metabolite biosynthesis in Streptomyces.
Fungal laccases have been highlighted as a catalytic tool for transforming phenols. Here we demonstrate that fungal laccase-catalyzed oxidations can transform naturally occurring phenols into plant fertilizers with properties very similar to those of commercial humic acids. Treatments of Arabidopsis thaliana with highly cross-linked polyphenolic products obtained from a mixture of catechol and vanillic acid were able to enhance the germination and salt tolerance of this plant. These results revealed that humic-like organic fertilizers can be produced via in vitro enzymatic oxidation reactions. In particular, the root elongation pattern resulting from the laccase products was comparable to that resulting from an auxin-like compound. A detailed structural comparison of the phenol variants and commercial humic acids revealed their similarities and differences. Analyses based on SEM, EFM, ERP, and zeta-potential measurement showed that they both formed globular granules bearing various hydrophilic/polar groups in aqueous and solid conditions. Solid-phase C NMR, FT-IR-ATR, and elemental analyses showed that more nitrogen-based functional and aliphatic groups were present in the commercial humic acids. Significant differences were also identifiable with respect to particle size and specific surface area. High-resolution (15 T) FT-ICR mass spectrometry-based van Krevelen diagrams showed the compositional features of the variants to be a subset of those of the humic acids. Overall, our study unraveled essential structural features of polyaromatics that affect the growth of plants, and also provided novel bottom-up ecofriendly and finely tunable pathways for synthesizing humic-like fertilizers.
The biological protein synthesis system has been engineered to incorporate unnatural amino acid into proteins, and this has opened up new routes for engineering proteins with novel compositions. While such systems have been successfully applied in research, there remains a need to develop new approaches with respect to the wider application of unnatural amino acids. In this study, we reported a strategy for incorporating unnatural amino acids into proteins by reassigning one of the Arg sense codons, the AGG codon. Using this method, several unnatural amino acids were quantitatively incorporated into the AGG site. Furthermore, we applied the method to multiple AGG sites, and even to tandem AGG sequences. The method developed and described here could be used for engineering proteins with diverse unnatural amino acids, particularly when employed in combination with other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.