Electrical impedance tomography (EIT) provides functional images of an electrical conductivity distribution inside the human body. Since the 1980s, many potential clinical applications have arisen using inexpensive portable EIT devices. EIT acquires multiple trans-impedance measurements across the body from an array of surface electrodes around a chosen imaging slice. The conductivity image reconstruction from the measured data is a fundamentally ill-posed inverse problem notoriously vulnerable to measurement noise and artifacts. Most available methods invert the ill-conditioned sensitivity or the Jacobian matrix using a regularized least-squares data-fitting technique. Their performances rely on the regularization parameter, which controls the trade-off between fidelity and robustness. For clinical applications of EIT, it would be desirable to develop a method achieving consistent performance over various uncertain data, regardless of the choice of the regularization parameter. Based on the analysis of the structure of the Jacobian matrix, we propose a fidelity-embedded regularization (FER) method and a motion artifact reduction filter. Incorporating the Jacobian matrix in the regularization process, the new FER method with the motion artifact reduction filter offers stable reconstructions of high-fidelity images from noisy data by taking a very large regularization parameter value. The proposed method showed practical merits in experimental studies of chest EIT imaging.
This paper proposes a new approach for solving ill-posed nonlinear inverse problems. For ease of explanation of the proposed approach, we use the example of lung electrical impedance tomography (EIT), which is known to be a nonlinear and ill-posed inverse problem. Conventionally, penalty-based regularization methods have been used to deal with the ill-posed problem. However, experiences over the last three decades have shown methodological limitations in utilizing prior knowledge about tracking expected imaging features for medical diagnosis. The proposed method's paradigm is completely different from conventional approaches; the proposed reconstruction uses a variety of training data sets to generate a low dimensional manifold of approximate solutions, which allows to convert the ill-posed problem to a well-posed one. Variational autoencoder was used to produce a compact and dense representation for lung EIT images with a low dimensional latent space. Then, we learn a robust connection between the EIT data and the low-dimensional latent data. Numerical simulations validate the effectiveness and feasibility of the proposed approach.
When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS). We found that their electrical impedance spectra depend not only on the electrical properties of the conductive yarns, but also on their weaving structures. When we apply a mechanical tension or compression, there occur structural deformations in the conductive fabrics altering their apparent electrical impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased or decreased under tension or compression, respectively. For an almost non-stretchable conductive fabric, both tension and compression resulted in decreased impedance values since the applied tension failed to elongate the fabric. To measure both tension and compression separately, it is desirable to use a stretchable conductive fabric. For any conductive fabric chosen as a pressure-sensing material, its resistivity under no loading conditions must be carefully chosen since it determines a measurable range of the impedance values subject to different amounts of loadings. We suggest the EIS method to characterize the electromechanical property of a conductive fabric in designing a thin and flexible fabric pressure sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.