In this paper, we study the high-dimensional sparse directed acyclic graph (DAG) models under the empirical sparse Cholesky prior. Among our results, strong model selection consistency or graph selection consistency is obtained under more general conditions than those in the existing literature. Compared to Cao, Khare and Ghosh (2017), the required conditions are weakened in terms of the dimensionality, sparsity and lower bound of the nonzero elements in the Cholesky factor. Furthermore, our result does not require the irrepresentable condition, which is necessary for Lasso type methods. We also derive the posterior convergence rates for precision matrices and Cholesky factors with respect to various matrix norms. The obtained posterior convergence rates are the fastest among those of the existing Bayesian approaches. In particular, we prove that our posterior convergence rates for Cholesky factors are the minimax or at least nearly minimax depending on the relative size of true sparseness for the entire dimension. The simulation study confirms that the proposed method outperforms the competing methods.MSC 2010 subject classifications: Primary 62C20; secondary 62F15, 62C12.
We obtain the optimal Bayesian minimax rate for the unconstrained large covariance matrix of multivariate normal sample with mean zero, when both the sample size, n, and the dimension, p, of the covariance matrix tend to infinity. Traditionally the posterior convergence rate is used to compare the frequentist asymptotic performance of priors, but defining the optimality with it is elusive. We propose a new decision theoretic framework for prior selection and define Bayesian minimax rate. Under the proposed framework, we obtain the optimal Bayesian minimax rate for the spectral norm for all rates of p. We also considered Frobenius norm, Bregman divergence and squared log-determinant loss and obtain the optimal Bayesian minimax rate under certain rate conditions on p. A simulation study is conducted to support the theoretical results.
We introduce the k-banded Cholesky prior for estimating a high-dimensional bandable precision matrix via the modified Cholesky decomposition. The bandable assumption is imposed on the Cholesky factor of the decomposition. We obtained the P-loss convergence rate under the spectral norm and the matrix ∞ norm and the minimax lower bounds. Since the P-loss convergence rate (Lee and Lee (2017)) is stronger than the posterior convergence rate, the rates obtained are also posterior convergence rates. Furthermore, when the true precision matrix is a k 0 -banded matrix with some finite k 0 , the obtained P-loss convergence rates coincide with the minimax rates. The established convergence rates are slightly slower than the minimax lower bounds, but these are the fastest rates for bandable precision matrices among the existing Bayesian approaches. A simulation study is conducted to compare the performance to the other competitive estimators in various scenarios.
Statistical inference for sparse covariance matrices is crucial to reveal dependence structure of large multivariate data sets, but lacks scalable and theoretically supported Bayesian methods. In this paper, we propose beta-mixture shrinkage prior, computationally more efficient than the spike and slab prior, for sparse covariance matrices and establish its minimax optimality in high-dimensional settings. The proposed prior consists of beta-mixture shrinkage and gamma priors for off-diagonal and diagonal entries, respectively. To ensure positive definiteness of the resulting covariance matrix, we further restrict the support of the prior to a subspace of positive definite matrices. We obtain the posterior convergence rate of the induced posterior under the Frobenius norm and establish a minimax lower bound for sparse covariance matrices. The class of sparse covariance matrices for the minimax lower
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.