Epithelial-mesenchymal transition (EMT) is a cellular process during which epithelial cells acquire mesen chymal phenotypes and behaviour following the down regulation of epithelial features. EMT is triggered in response to signals that cells receive from their micro environment. The epithelial state of the cells in which EMT is initiated is characterized by stable epithelial cell-cell junctions, apical-basal polarity and interac tions with basement membrane. During EMT, changes in gene expression and posttranslational regulation mechanisms lead to the repression of these epithelial characteristics and the acquisition of mesenchymal char acteristics. Cells then display fibroblastlike morphol ogy and cytoarchitecture, as well as increased migratory capacity. Furthermore, these now migratory cells often acquire invasive properties (Fig. 1). EMT was first described by researchers studying early embryogenesis as a programme with welldefined cellular features 1,2. It is now widely accepted that EMT occurs normally during early embryonic development, to enable a variety of morphogenetic events, as well as later in development and during wound healing in adults.
During development, cells often switch between static and migratory behaviours. Such transitions are fundamental events in development and are linked to harmful consequences in pathology. It has long been considered that epithelial cells either migrate collectively as epithelial cells, or undergo an epithelial-to-mesenchymal transition and migrate as individual mesenchymal cells. Here, we assess what is currently known about in vivo cell migratory phenomena and hypothesise that such migratory behaviours do not fit into alternative and mutually exclusive categories. Rather, we propose that these categories can be viewed as the most extreme cases of a general continuum of morphological variety, with cells harbouring different degrees or combinations of epithelial and mesenchymal features and displaying an array of migratory behaviours.
The epithelial-to-mesenchymal transition (EMT) converts cells from static epithelial to migratory mesenchymal states (Hay, 1995). Here, we demonstrate that EMT in the Drosophila endoderm is dependent on the GATA-factor Serpent (Srp), and that Srp acts as a potent trigger for this transition when activated ectopically. We show that Srp affects endodermal-EMT through a downregulation of junctional dE-Cadherin (dE-Cad) protein, without a block in its transcription. Moreover, the relocalization of dE-Cad is achieved through the direct repression of crumbs (crb) by Srp. Finally, we show that hGATA-6, an ortholog of Srp, induces a similar transition in mammalian cells. Similar to Srp, hGATA-6 acts through the downregulation of junctional E-Cad, without blocking its transcription, and induces the repression of a Crumbs ortholog, crb2. Together, these results identify a set of GATA factors as a conserved alternative trigger to repress epithelial characteristics and confer migratory capabilities on epithelial cells in development and pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.