Some of the most relevant future applications of multi-agent systems like autonomous driving or factories as a service display mixed-motive scenarios, where agents might have conflicting goals. In these settings agents are likely to learn undesirable outcomes in terms of cooperation under independent learning, such as overly greedy behavior. Motivated from real world societies, in this work we propose to utilize market forces to provide incentives for agents to become cooperative. As demonstrated in an iterated version of the Prisoner's Dilemma, the proposed market formulation can change the dynamics of the game to consistently learn cooperative policies. Further we evaluate our approach in spatially and temporally extended settings for varying numbers of agents. We empirically find that the presence of markets can improve both the overall result and agent individual returns via their trading activities.
A: Convolutional neural networks (CNNs) have found applications in many image processing tasks, such as feature extraction, image classification, and object recognition. It has also been shown that the inverse of CNNs, so-called deconvolutional neural networks, can be used for inverse problems such as plasma tomography. In essence, plasma tomography consists in reconstructing the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated measurements from multiple radiation detectors. Since the reconstruction process is computationally intensive, a deconvolutional neural network trained to produce the same results will yield a significant computational speedup, at the expense of a small error which can be assessed using different metrics. In this work, we discuss the design principles behind such networks, including the use of multiple layers, how they can be stacked, and how their dimensions can be tuned according to the number of detectors and the desired tomographic resolution for a given fusion device. We describe the application of such networks at JET and COMPASS, where at JET we use the bolometer system, and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays. K : Computerized Tomography (CT) and Computed Radiography (CR); Plasma diagnostics -interferometry, spectroscopy and imaging 1Corresponding author. 2See the author list of Overview of the JET preparation for Deuterium-Tritium Operation by E. Joffrin et al. in Nucl.
As automatic optimization techniques find their way into industrial applications, the behavior of many complex systems is determined by some form of planner picking the right actions to optimize a given objective function. In many cases, the mapping of plans to objective reward may change due to unforeseen events or circumstances in the real world. In those cases, the planner usually needs some additional effort to adjust to the changed situation and reach its previous level of performance. Whenever we still need to continue polling the planner even during re-planning, it oftentimes exhibits severely lacking performance. In order to improve the planner's resilience to unforeseen change, we argue that maintaining a certain level of diversity amongst the considered plans at all times should be added to the planner's objective. Effectively, we encourage the planner to keep alternative plans to its currently best solution.As an example case, we implement a diversity-aware genetic algorithm using two different metrics for diversity (differing in their generality) and show that the blow in performance due to unexpected change can be severely lessened in the average case. We also analyze the parameter settings necessary for these techniques in order to gain an intuition how they can be incorporated into larger frameworks or process models for software and systems engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.