The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases has been implicated in a variety of cancers. In particular, activating mutations such as the L858R point mutation in exon 21 and the small in-frame deletions in exon 19 of the EGFR tyrosine kinase domain are correlated with sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer (NSCLC) patients. Clinical treatment of patients is limited by the development of drug resistance resulting mainly from a gatekeeper mutation (T790M). In this study, we evaluated the therapeutic potential of a novel, irreversible pan-HER inhibitor, HM781-36B. The results from this study show that HM781-36B is a potent inhibitor of EGFR in vitro, including the EGFR-acquired resistance mutation (T790M), as well as HER-2 and HER-4, compared with other EGFR tyrosine kinases inhibitors (erlotinib, lapatinib and BIBW2992). HM781-36B treatment of EGFR DelE746_A750-harboring erlotinib-sensitive HCC827 and EGFR L858R/T790M-harboring erlotinib-resistant NCI-H1975 NSCLC cells results in the inhibition of EGFR phosphorylation and the subsequent deactivation of downstream signaling proteins. Additionally, HM781-36B shows an excellent efficacy in a variety of EGFR-and HER-2-dependent tumor xenograft models, including erlotinib-sensitive HCC827 NSCLC cells, erlotinib-resistant NCI-H1975 NSCLC cells, HER-2 overexpressing Calu-3 NSCLC cells, NCI-N87 gastric cancer cells, SK-Ov3 ovarian cancer cells and EGFR-overexpressing A431 epidermoid carcinoma cancer cells. On the basis of these preclinical results, HM781-36B is the most potent pan-HER inhibitor, which will be advantageous for the treatment of patients with NSCLC including clinical limitation caused by acquired mutation (EGFR T790M), breast cancer and gastric cancer.
BackgroundSystemic lupus erythematosus (SLE) is associated with B cell hyperactivity, and lupus nephritis (LN), in particular, is promoted by the production of autoantibodies and immune complex deposition. Bruton’s tyrosine kinase (BTK) plays critical roles in B cell receptor-related and Fc receptor-related signaling. We aimed to investigate the impact of therapeutic intervention with HM71224 (LY3337641), a selective BTK inhibitor, on the development of murine SLE-like disease features.MethodsWe examined the therapeutic effects of HM71224 on SLE-like disease features in MRL/lpr and NZB/W F1 mice. The disease-related skin lesion was macroscopically observed in MRL/lpr mice, and the impact on splenomegaly and lymphadenopathy was determined by the weight of the spleen and cervical lymph node. The renal function was evaluated by measuring blood urea nitrogen, serum creatinine, and urine protein, and the renal damage was assessed by histopathological grading. Survival rate was observed during the administration period. The impact of B cell inhibition was investigated in splenocytes from both mice using flow cytometry. Autoantibody was measured in serum by ELISA.ResultsHM71224 effectively suppressed splenic B220+GL7+, B220+CD138+, and B220+CD69+ B cell counts, and anti-dsDNA IgG and reduced splenomegaly and lymph node enlargement. The compound also prevented skin lesions caused by lupus development, ameliorated renal inflammation and damage with increased blood urea nitrogen and creatinine, and decreased proteinuria. Furthermore, HM71224 also decreased mortality from lupus development in both mouse models.ConclusionOur results indicate that inhibition of BTK by HM71224 effectively reduced B cell hyperactivity and significantly attenuated the development of SLE and LN in rodent SLE models.
The mitogen-activated protein kinase (MAPK) pathway is particularly important for the survival and proliferation of tumor cells. Activation of the MAPK pathway due to mutations in BRAF, NRAS and KRAS is considered one of the causes of solid tumors (NSCLC, CRC,HCC, andthyroid cancers) and hematologic malignancies. HM95573 is a novel, highly potent RAF kinase inhibitor. Biochemically assayed for over 120 kinases, HM95573 showed the high selectivity toward BRAF mutant and CRAF kinases. The half maximal inhibition concentrations (IC50) of HM95573 against BRAFWT, BRAFV600E and CRAF kinases were 41nM, 7nM and 2nM, respectively. The strongly inhibited kinases subsequent to RAF kinases appeared to be CSF1R (44nM), DDR1 (77nM) and DDR2 (182 nM). HM95573 potently inhibited the growth of BRAFmutation CRC cell lines (e.g. IC50: 118nM for Colo-205) and thyroid cancer cell lines (43nM for B-CPAP); KRAS mutation NSCLC cell lines(297nM for Calu-6),CRC cell lines(65nM for HCT-116) and thyroid cancer cell lines(479nM for CAL-62); and NRAS mutation HCC cell lines(28nM for HepG2) andleukemia cell lines (39nM for HL-60). HM95573 effectively inhibited the phosphorylations of MEK and ERK, downstream kinases associated with cell proliferation in tumor cell lines mutated in BRAF, KRAS and NRAS. In addition, the phosphorylation of downstream kinases of RAF such as MEK and ERK was effectively inhibited with treatment of HM95573 in mutant KRAS NSCLC and CRC cells. HM95573 showed the excellent antitumor activity in mouse models xenografted with BRAF mutation cell line (Colo-205), KRAS mutation cell lines (Calu-6 and HCT-116)and NRAS mutation cell line (HepG2)two RAF inhibitors approved in melanoma which were effective to only BRAF mutation cell lines under conditions tested. The in vivo antitumor activity of HM95573 was potentiated with MEK inhibitors. Now, HM95573 is currently in phase I development in patients with advanced solid tumors including KRAS mutation NSCLC in Korea. Citation Format: Young-Mi Lee, InHwan Bae, Namgoong Gwang Mo, Jae Ho Lee, Suhyeon Kim, Ji Yeon Song, Kyu Hang Lee, Tae Hun Song, Young Gil Ahn, Young Hoon Kim, Kwee Hyun Suh. Antitumor activity of the selective RAF inhibitor HM95573 in solid tumors and hematologic malignancies. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2607. doi:10.1158/1538-7445.AM2015-2607
HM41322 is a novel oral sodium-glucose cotransporter (SGLT) 1/2 dual inhibitor. In this study, the in vitro and in vivo pharmacokinetic and pharmacologic profiles of HM41322 were compared to those of dapagliflozin. HM41322 showed a 10-fold selectivity for SGLT2 over SGLT1. HM41322 showed an inhibitory effect on SGLT2 similar to dapagliflozin, but showed a more potent inhibitory effect on SGLT1 than dapagliflozin. The maximum plasma HM41322 level after single oral doses at 0.1, 1, and 3 mg/kg were 142, 439, and 1830 ng/ml, respectively, and the T1/2 was 3.1 h. HM41322 was rapidly absorbed and reached the circulation within 15 min. HM41322 maximized urinary glucose excretion by inhibiting both SGLT1 and SGLT2 in the kidney. HM41322 3 mg/kg caused the maximum urinary glucose excretion in normoglycemic mice (19.32±1.16 mg/g) at 24 h. In normal and diabetic mice, HM41322 significantly reduced glucose excursion. Four-week administration of HM41322 in db/db mice reduced HbA1c in a dose dependent manner. Taken together, HM41322 showed a favorable preclinical profile of postprandial glucose control through dual inhibitory activities against SGLT1 and SGLT2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.