In this study, a novel tissue engineering scaffold material of electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposite was prepared by means of an effective calcium and phosphate (Ca-P) alternate soaking method. nHA was successfully produced on regenerated silk fibroin nanofiber as a substrate within several minutes without any pretreatments. The morphologies of both nonmineralized and mineralized nanofibers were analyzed using a field-emission scanning electron microscopy (FESEM). The crystallographic phases of the nHA were analyzed using X-ray diffraction (XRD). Fourier transform infrared (FTIR) spectrophotometer and thermogravimetry analyses (TGA) were employed to determine the type of functional groups and the amount of nHA presenting in the silk/nHA biocomposite nanofibers, respectively. The osteoblastic activities of this novel nanofibrous biocomposite scaffold were also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity was ameliorated on mineralized nanofibers. All these results indicated that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering.
In this work, we report the fabrication and cell affinity studies of the poly(vinyl alcohol) (PVA)/hyaluronic acid (HA) cross-linked nanofibers via electrospinning and post cross-linking. FT-IR and TGA analysis demonstrate that HA is not influenced by acid environment such as HCl vapor during cross-linking, and well incorporated into PVA nanofibers. Swelling behavior and cell adhesion of the PVA/HA hydrogel nanofibers are investigated and compared with pure PVA hydrogel nanofibers. It is expected that the nanofibrous PVA/HA hydrogel fibers could be a promising scaffold for cell culture and tissue engineering applications
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.