High-quality piezoelectric thin films have recently been in demand for mobile sensor applications. An investigation was conducted to understand the improvements in the piezoelectric and imprint characteristics of heavily Nb-doped lead zirconate titanate thin films with an extensive range of Nb content (up to 14 mol %) beyond the typical solid solubility limit of Nb. The positive effects produced by the unusual doping of Nb were realized by utilizing an in situ sputtering process that did not require a subsequent annealing and poling procedure. An enhanced piezoelectric coefficient, -e, of -12.87 C/m and a stronger shift in the coercive field, E, of ∼20 kV/cm, which are ideally useful for mobile sensor applications, were obtained for the 12 mol % Nb-doped films deposited on nonconventional buffer electrodes of Ir/TiW. The reduced oxygen vacancy concentration and preferred domain orientation with a stronger piezoresponse induced by the Nb donor doping contributed to the enhancement of the piezoelectric properties. Potential defect dipoles aligned by a residual stress gradient along columnar structures seemed to induce an internal electric field in the Nb-doped films, leading to the preferred domain orientation, as well as the strong imprint behavior due to a clamping of domain walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.