Grain growth during sintering is a critical issue for the manufacture of nanocrystalline bulk materials from nanosized powders. The grain growth process during sintering can be viewed as consisting of two parts: initial coarsening during early and intermediate stages of sintering and latter stage grain growth during the final stage of sintering. The latter stage grain growth is the normal grain growth that has been well studied and reported in the literature. The initial coarsening, which often inevitably causes a material to lose nanoscaled grain size characteristics, however, is not well studied at all. In this investigation, the initial coarsening during sintering of nanosized powders was studied by both nonisothermal and isothermal experimental techniques using tungsten as an example material. The results show that the initial coarsening during the heat-up process of a sintering cycle is sufficient to increase the grain size beyond the nanoscale. The kinetics of initial coarsening is found to be linear rather than polynomial, as predicted by the conventional power law of grain growth. The analysis of activation energies showed that surface diffusion is the primary mechanism for interparticle mass transport during the initial coarsening. The linear kinetic behavior could be attributed to the pinning of grain boundaries by surface grooves and high concentration of defects as the result of the synthesis of nanosized powders.
A thermal plasma process has been applied to the synthesis of nanosized tungsten carbide powder with ammonium paratungstate (APT) as the precursor. The reduction and carburization of vaporized APT produced nanosized tungsten carbide (WC1−x) powder, which sometimes contained a small amount of W2C phase. The effects of reactant gas composition, plasma torch power, the flow rate of plasma gas, and the addition of secondary plasma gas (H2) on the product composition and particle size were investigated. The produced tungsten carbide (WC1−x) powder was <20 nm in particle size. The synthesized powders were also subjected to a hydrogen heat treatment to fully carburize the WC1−x and W2C phases to the WC phase as well as to remove excess carbon. Finally, WC powder of particle size <100 nm was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.