In connection with the recent proposal for possible singularity formation at the boundary for solutions of 3d axi-symmetric incompressible Euler's equations (Luo and Hou, 2014a), we study models for the dynamics at the boundary and show that they exhibit a finite-time blow-up from smooth data.
Abstract. The 2D conservative Boussinesq system describes inviscid, incompressible, buoyant fluid flow in gravity field. The possibility of finite time blow up for solutions of this system is a classical problem of mathematical hydrodynamics. We consider a 1D model of 2D Boussinesq system motivated by a particular finite time blow up scenario. We prove that finite time blow up is possible for the solutions to the model system.
In connection with the recent proposal for possible singularity formation at the boundary for solutions of 3d axi-symmetric incompressible Euler's equations (Luo and Hou, 2014a), we study models for the dynamics at the boundary and show that they exhibit a finite-time blow-up from smooth data.
The Lamb dipole is a traveling wave solution to the two-dimensional Euler equations introduced by S. A. Chaplygin (1903) andH. Lamb (1906) at the early 20th century. We prove orbital stability of this solution based on a vorticity method initiated by V. I. Arnold. Our method is a minimization of a penalized energy with multiple constraints that deduces existence and orbital stability for a family of traveling waves. As a typical case, orbital stability of the Lamb dipole is deduced by characterizing a set of minimizers as an orbit of the dipole by a uniqueness theorem in the variational setting.
We study stability of a spherical vortex introduced by M. Hill in 1894, which is an explicit solution of the three-dimensional incompressible Euler equations. The flow is axi-symmetric with no swirl, the vortex core is simply a ball sliding on the axis of symmetry with a constant speed, and the vorticity in the core is proportional to the distance from the symmetry axis. We use the variational setting introduced by A. Friedman and B. Turkington (Trans. Amer. Math. Soc., 1981), which produced a maximizer of the kinetic energy under constraints on vortex strength, impulse, and circulation. We match the set of maximizers with the Hill's vortex via the uniqueness result of C. Amick and L. Fraenkel (Arch. Rational Mech. Anal., 1986). The matching process is done by an approximation near exceptional points (so-called metrical boundary points) of the vortex core. As a consequence, the stability up to a translation is obtained by using a concentrated compactness method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.