Co-robots that can effectively move with and operate alongside humans in a variety of conditions could revolutionize the utility of robots for a wide range of applications. Unfortunately, most current robotic systems have difficulty operating in human environments that people easily traverse, much less interact with people. Wheeled robots have difficulty climbing stairs or going over rough terrain. Heavy and powerful legged robots pose safety risks when interacting with humans. Compliant, lightweight tensegrity robots built from interconnected tensile (cables) and compressive (rods) elements are promising structures for co-robotic applications. This paper describes design and control of a rapidly prototyped tensegrity robot for locomotion. The software and hardware of this robot can be extended to build a wide range of tensegrity robotic configurations and control strategies. This rapid prototyping approach will greatly lower the barrier-of-entry in time and cost for research groups studying tensegrity robots suitable for co-robot applications.
Hybrid vertical take-off and landing vehicles (VTOL) with lift production from wings and distributed propulsive system present unique control challenges. Existing methods tend to stitch and switch different controllers specially designed for fixed-wing aircraft or multicopters. In this paper, we present a unified framework for designing controllers for such winged VTOL vehicles that are commonly found in recent flying car models. The proposed method is broken down into nonlinear control of both position and attitude with forces and moments as inputs, and real-time control allocation that integrates distributed propulsive actuation with conventional control surface deflection. We also present a strategy that avoids saturation of distributed propulsion control inputs. The effectiveness of the proposed framework is demonstrated through simulation and closed-loop flight experiment with our winged VTOL flying car prototype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.