Electroacupuncture (EA) is a novel therapy based on traditional acupuncture combined with modern eletrotherapy that is currently being investigated as a treatment for acute ischemic stroke. Here, we studied whether acute EA stimulation improves tissue and functional outcome following experimentally induced cerebral ischemia in mice. We hypothesized that endothelial nitric oxide synthase (eNOS)-mediated perfusion augmentation was related to the beneficial effects of EA by interventions in acute ischemic injury. EA stimulation at Baihui (GV20) and Dazhui (GV14) increased cerebral perfusion in the cerebral cortex, which was suppressed in eNOS KO, but there was no mean arterial blood pressure (MABP) response. The increased perfusion elicited by EA were completely abolished by a muscarinic acetylcholine receptor (mAChR) blocker (atropine), but not a β-adrenergic receptor blocker (propranolol), an α-adrenergic receptor blocker (phentolamine), or a nicotinic acetylcholine receptor (nAChR) blocker (mecamylamine). In addition, EA increased acetylcholine (ACh) release and mAChR M3 expression in the cerebral cortex. Acute EA stimulation after occlusion significantly reduced infarct volume by 34.5% when compared to a control group of mice at 24 h after 60 min-middle cerebral artery occlusion (MCAO) (moderate ischemic injury), but not 90-min MCAO (severe ischemic injury). Furthermore, the impact of EA on moderate ischemic injury was totally abolished in eNOS KO. Consistent with a smaller infarct size, acute EA stimulation led to prominent improvement of neurological function and vestibule-motor function. Our results suggest that acute EA stimulation after moderate focal cerebral ischemia, but not severe ischemia improves tissue and functional recovery and ACh/eNOS-mediated perfusion augmentation might be related to these beneficial effects of EA by interventions in acute ischemic injury.
Background Polymeric micelles using amphiphilic macromolecules are promising vehicles for antitumor targeting. In this study, we prepared anticancer agent-incorporated polymeric micelles using novel block copolymer. Methods We synthesized a block copolymer composed of dextran and poly (DL-lactide-co-glycolide) (DexbLG) for antitumor drug delivery. Doxorubicin was selected as the anticancer drug, and was incorporated into polymeric micelles by dialysis. Polymeric micelles were observed by transmission electron microscopy to be spherical and smaller than 100 nm, with a narrow size distribution. The particle size of doxorubicin-incorporated polymeric micelles increased with increasing drug content. Higher initial drug feeding also increased the drug content. Results During the drug-release study, an initial burst release of doxorubicin was observed for 10 hours, and doxorubicin was continuously released over 4 days. To investigate the in vitro anticancer effects of the polymeric micelles, doxorubicin-resistant HuCC-T1 cells were treated with a very high concentration of doxorubicin. In an antiproliferation study, the polymeric micelles showed higher cytotoxicity to doxorubicin-resistant HuCC-T1 cells than free doxorubicin, indicating that the polymeric micelles were effectively engulfed by tumor cells, while free doxorubicin hardly penetrated the tumor cell membrane. On confocal laser scanning microscopy, free doxorubicin expressed very weak fluorescence intensity, while the polymeric micelles expressed strong red fluorescence. Furthermore, in flow cytometric analysis, fluorescence intensity of polymeric micelles was almost twice as high than with free doxorubicin. Conclusion DexbLG polymeric micelles incorporating doxorubicin are promising vehicles for antitumor drug targeting.
Hypercholesterolemia is a known risk factor for Alzheimer's disease (AD). In the present study, we investigated whether diet-induced hypercholesterolemia affects AD-like pathologies such as amyloid β-peptide (Aβ) deposition, tau pathology, inflammation and cognitive impairment, using an Aβ25-35-injected AD-like pathological mouse model. Hypercholesterolemia was induced by providing apolipoprotein E knock out (Apo E KO) mice with a high-fat diet for 4 weeks prior to Aβ25-35 injection and for 4 weeks following Aβ25-35 injection, for a total of 8 weeks of treatment. Our data showed that intracerebroventricular injection of C57BL/6J mice with Aβ25-35 resulted in increased immunoreactivity of Aβ and phosphorylated-tau (p-tau), which was accompanied by enhanced microglial CD11b-like immunoreactivity in the brain. Moreover, hypercholesterolemia slightly increased Aβ and p-tau levels and microglial activation in the vehicle group, while further increasing the Aβ and p-tau levels and microglial activation in Aβ25-35-injected mice. Consistent with the neuropathological analysis, hypercholesterolemia resulted in significant spatial learning and memory deficits in Aβ25-35-injected mice as revealed by water maze testing. Collectively, these findings demonstrated that hypercholesterolemia accelerated Aβ accumulation and tau pathology, which was accompanied by microglial activation and subsequent aggravation of memory impairment induced by Aβ25-35. Thus, we suggest that the modulation of cholesterol can be used to reduce the risk of developing AD.
The effect of mulberry (Morus alba L.) fruit extract (MFE) on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes was evaluated. C57BL/Ksj-diabetic db/db mice were divided into three groups: diabetic control, rosiglitazone, and MFE groups. Blood glucose, plasma insulin, and intraperitoneal glucose were measured, and an insulin tolerance test was performed after MFE supplementation in db/db mice. In addition, the protein levels of various targets of insulin signaling were measured by western blotting. The blood levels of glucose and HbA1c were significantly lower in the MFE-supplemented group than in the diabetic control group. Moreover, glucose and insulin tolerance tests showed that MFE treatment increased insulin sensitivity. The homeostatic index of insulin resistance significantly decreased in the MFE-supplemented group relative to the diabetic control group. MFE supplementation significantly stimulated the levels of phosphorylated (p)-AMP-activated protein kinase (pAMPK) and p-Akt substrate of 160 kDa (pAS160) and enhanced the level of plasma membrane-glucose transporter 4 (GLUT4) in skeletal muscles. Further, dietary MFE significantly increased pAMPK and decreased the levels of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. MFE may improve hyperglycemia and insulin sensitivity via activation of AMPK and AS160 in skeletal muscles and inhibition of gluconeogenesis in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.