This paper presents a method of particle filter localization for autonomous vehicles, based on two-dimensional (2D) laser sensor measurements and road features. To navigate an urban environment, an autonomous vehicle should be able to estimate its location with a reasonable accuracy. By detecting road features such as curbs and road markings, a grid-based feature map is constructed using 2D laser range finder measurements. Then, a particle filter is employed to accurately estimate the position of the autonomous vehicle. Finally, the performance of the proposed method is verified and compared to accurate Differential Global Positioning Systems (DGPS) data through real road driving experiments.
This is the fourth volume of the successful series Robot Operating Systems: The Complete Reference, providing a comprehensive overview of robot operating systems (ROS), which is currently the main development framework for robotics applications, as well as the latest trends and contributed systems. The book is divided into four parts: Part 1 features two papers on navigation, discussing SLAM and path planning. Part 2 focuses on the integration of ROS into quadcopters and their control. Part 3 then discusses two emerging applications for robotics: cloud robotics, and video stabilization. Part 4 presents tools developed for ROS; the first is a practical alternative to the roslaunch system, and the second is related to penetration testing. This book is a valuable resource for ROS users and wanting to learn more about ROS capabilities and features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.