The present study evaluates the in vitro, in vivo, and ex vivo antithrombotic and anticoagulant effect of two flavonoids: quercetin and quercetin-3-O-β-d-glucoside (isoquercetin). The present results have shown that quercetin and isoquercetin inhibit the enzymatic activity of thrombin and FXa and suppress fibrin clot formation and blood clotting. The prolongation effect of quercetin and isoquercetin against epinephrine and collagen-induced platelet activation may have been caused by intervention in intracellular signaling pathways including coagulation cascade and aggregation response on platelets and blood. The in vivo and ex vivo anticoagulant efficacy of quercetin and isoquercetin was evaluated in thrombin-induced acute thromboembolism model and in ICR mice. Our findings showed that in vitro and in vivo inhibitory effects of quercetin were slightly higher than that of quercetin glucoside, whereas in vitro and ex vivo anticoagulant effects of quercetin were weaker than that of quercetin glucoside because of their structural characteristics.
We purified Lentinus edodes GNA01 fibrinolytic enzyme (LEFE) and identified it as a novel metalloprotease. LEFE was purified to homogeneity through a 2-step procedure, with an 8.28-fold increase in specific activity and 5.3% recovery. The molecular mass of LEFE was approximately 38 kDa, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its optimal pH, optimal temperature, pH stability, and thermal stability were 5, 30°C, 6-7, and 40°C, respectively. LEFE was inhibited by zinc and magnesium ions, and by EDTA and EGTA, indicating that LEFE is a metalloprotease. The protease exhibited fibrinolytic activity and a degradative effect on clot formation and blood clots. The protease prolonged activated partial thromboplastin time, prothrombin time, and coagulation time as induced by platelet aggregators (collagen and epinephrine). Taken together, our results indicate that L. edodes GNA01 produces a metalloprotease/fibrinolytic enzyme and that this enzyme might be applied as a new thrombolytic and antithrombotic agent for thrombosis-related cardiovascular disorders.
Nakaiase, a novel protease with antithrombotic and anticoagulant properties was purified from the leaves of Aster koraiensis Nakai, an edible medicinal plant. It had a molecular weight of 23 kDa, as confirmed by SDS‐PAGE analysis. The protease was active at 30 °C and pH 7.0. The amidolytic activity of nakaiase was inhibited by EDTA, EGTA, and several metal ions (Ca, Ni, and Zn). Nakaiase inhibited fibrin clot formation and degraded blood clot. It also inhibit activated factor X and thrombin enzymatic activity. In addition, nakaiase prolonged activated partial thromboplastin time and prothrombin time. Further, the protease exerted significant protective effects against thrombin‐induced pulmonary thromboembolism in mice. Nakaiase at a dose of 20 mg/kg was devoid of hemorrhagic activity. These results suggest that nakaiase has similar property to metalloprotease‐like protease, and has potential as a therapeutic agent for thrombosis owing to its antithrombotic properties and lack of hemorrhagic activity.
Practical applications
Aster koraiensis Nakai, an edible medicinal plant, has long been used as a traditional medicine and healthy food source in Korea because of its pharmacological efficacy. This study provides beneficial information regarding the antithrombotic potential of A. koraiensis Nakai and bioactive enzymes. Our findings clarify the antithrombotic activities of a new purified protease, which is useful in the development of potential natural pharmacological resources and agents for functional food and clinical application.
Skin whitening has recently renewed attention on Chinese herbal medicines with whitening activity for esthetic applications. Stachys sieboldii has been used as herbal medicine since ancient times and has the potential for development as a cosmetic material because of its astringent effect. In this study, with an aim to develop new functional materials with whitening effects, S. sieboldii water extracts were fermented with different mushroom mycelia. Fermented with Hericium erinaceus mycelia showed the strongest tyrosinase inhibition effect and the lowest melanin content. Thus, H. erinaceus mycelia, the most potent inhibitor of melanogenesis, was used for large-scale fermentation and fractionated. The ethyl acetate fraction, which had the strongest whitening activity, was separated and purified using HPLC. Finally, the single compound was isolated and identified as acteoside, which has promising whitening activity. Acteoside inhibited melanin synthesis and intracellular tyrosinase activity in a dose-dependent manner. The effects of acteoside on the expression of TYR, TRP-1, TRP-2, and MITF were analyzed using Western blot analysis, which showed that acteoside reduced the protein in a dose-dependent manner. Our findings reveal the potential applicability of S. sieboldii extract fermented with H. erinaceus mycelia and its useful component, which is an acteosid, for skin lightening and the treatment of pigmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.