Foot-and-mouth disease virus (FMDV) is a highly contagious disease that affects cloven-hoofed animals. The traditional diagnostic methods for FMDV have several drawbacks such as cross-reactivity, low sensitivity, and low selectivity. To overcome these drawbacks, we present an optical and electrochemical dual-modal approach for the specific detection of FMDV serotypes O and A by utilizing a magnetic nanoparticle labeling technique with resorufin β-d-glucopyranoside (res-β-glc) and β-glucosidase (β-glc), without the use of typical lateral flow assay or polymerase chain reaction. FMDV serotypes O and A were reacted with pan-FMDV antibodies that recognize all seven FMDV serotypes (O, A, C, Asia 1, SAT 1, SAT 2, and SAT 3). The antigen–antibody complex was then immobilized on magnetic nanoparticles and reacted with β-glc-conjugated FMDV type O or type A antibodies. Subsequently, the addition of res-β-glc resulted in the release of fluorescent resorufin and glucose owing to catalytic hydrolysis by β-glc. The detection limit of fluorescent signals using a fluorescence spectrophotometer was estimated to be log(6.7) and log(5.9) copies/mL for FMDV type O and A, respectively, while that of electrochemical signals using a glucometer was estimated to be log(6.9) and log(6.1) copies/mL for FMDV type O and A, respectively. Compared with a commercially available lateral flow assay diagnostic kit for immunochromatographic detection of FMDV type O and A, this dual-modal detection platform offers approximately four-fold greater sensitivity. This highly sensitive and accurate dual-modal detection method can be used for effective disease diagnosis and treatment, and will find application in the early-stage diagnosis of viral diseases and next-generation diagnostic platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.