Despite the ongoing spread of MERS, there is limited knowledge of the factors affecting its severity and outcomes. We analyzed clinical data and specimens from fourteen MERS patients treated in a hospital who collectively represent a wide spectrum of disease severity, ranging from mild febrile illness to fatal pneumonia, and classified the patients into four groups based on severity and mortality. Comparative and kinetic analyses revealed that high viral loads, weak antibody responses, and lymphopenia accompanying thrombocytopenia were associated with disease mortality, whereas persistent and gradual increases in lymphocyte responses might be required for effective immunity against MERS-CoV infection. Leukocytosis, primarily due to increased neutrophils and monocytes, was generally observed in more severe and fatal cases. The blood levels of cytokines such as IL-10, IL-15, TGF-β, and EGF were either positively or negatively correlated with disease mortality. Robust induction of various chemokines with differential kinetics was more prominent in patients that recovered from pneumonia than in patients with mild febrile illness or deceased patients. The correlation of the virological and immunological responses with disease severity and mortality, as well as their responses to current antiviral therapy, may have prognostic significance during the early phase of MERS.
BackgroundFrom May to July 2015, the Republic of Korea experienced the largest outbreak of Middle East respiratory syndrome (MERS) outside the Arabian Peninsula. A total of 186 patients, including 36 deaths, had been diagnosed with MERS-coronavirus (MERS-CoV) infection as of September 30th, 2015.Materials and MethodsWe obtained information of patients who were confirmed to have MERS-CoV infection. MERS-CoV infection was diagnosed using real-time reverse-transcriptase polymerase chain reaction assay.ResultsThe median age of the patients was 55 years (range, 16 to 86). A total of 55.4% of the patients had one or more coexisting medical conditions. The most common symptom was fever (95.2%). At admission, leukopenia (42.6%), thrombocytopenia (46.6%), and elevation of aspartate aminotransferase (42.7%) were observed. Pneumonia was detected in 68.3% of patients at admission and developed in 80.8% during the disease course. Antiviral agents were used for 74.7% of patients. Mechanical ventilation, extracorporeal membrane oxygenation, and convalescent serum were employed for 24.5%, 7.1%, and 3.8% of patients, respectively. Older age, presence of coexisting medical conditions including diabetes or chronic lung disease, presence of dyspnea, hypotension, and leukocytosis at admission, and the use of mechanical ventilation were revealed to be independent predictors of death.ConclusionThe clinical features of MERS-CoV infection in the Republic of Korea were similar to those of previous outbreaks in the Middle East. However, the overall mortality rate (20.4%) was lower than that in previous reports. Enhanced surveillance and active management of patients during the outbreak may have resulted in improved outcomes.
Background: Observational studies of the ongoing coronavirus disease 2019 (COVID-19) outbreak suggest that a 'cytokine storm' is involved in the pathogenesis of severe illness. However, the molecular mechanisms underlying the altered pathological inflammation in COVID-19 are largely unknown. We report here that toll-like receptor (TLR) 4-mediated inflammatory signaling molecules are upregulated in peripheral blood mononuclear cells (PBMCs) from COVID-19 patients, compared with healthy controls (HC). Methods: A total of 48 subjects including 28 COVID-19 patients (8 severe/critical vs. 20 mild/ moderate cases) admitted to Chungnam National University Hospital, and age/sex-matched 20 HC were enrolled in this study. PBMCs from the subjects were processed for nCounter Human Immunology gene expression assay to analyze the immune related transcriptome profiles. Recombinant proteins of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were used to stimulate the PBMCs and monocyte-derived macrophages, and real-time polymerase chain reaction was performed to quantify the mRNA expressions of the proinflammatory cytokines/chemokines. Results: Among the most highly increased inflammatory mediators in severe/critically ill patients, S100A9, an alarmin and TLR4 ligand, was found as a noteworthy biomarker, because it inversely correlated with the serum albumin levels. We also observed that recombinant S2 and nucleocapsid proteins of SARS-CoV-2 significantly increased proinflammatory cytokines/chemokines and S100A9 in human primary PBMCs. Conclusion: These data support a link between TLR4 signaling and pathological inflammation during COVID-19 and contribute to develop therapeutic approaches through targeting TLR4-mediated inflammation.
The newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe respiratory infection with a high mortality rate (~35%). MERS-CoV has been a global threat due to continuous outbreaks in the Arabian peninsula and international spread by infected travelers since 2012. From May to July 2015, a large outbreak initiated by an infected traveler from the Arabian peninsula swept South Korea and resulted in 186 confirmed cases with 38 deaths (case fatality rate, 20.4%). Here, we show the rapid emergence and spread of a mutant MERS-CoV with reduced affinity to the human CD26 receptor during the South Korean outbreak. We isolated 13 new viral genomes from 14 infected patients treated at a hospital and found that 12 of these genomes possess a point mutation in the receptor-binding domain (RBD) of viral spike (S) protein. Specifically, 11 of these genomes have an I529T mutation in RBD, and 1 has a D510G mutation. Strikingly, both mutations result in reduced affinity of RBD to human CD26 compared to wild-type RBD, as measured by surface plasmon resonance analysis and cellular binding assay. Additionally, pseudotyped virus bearing an I529T mutation in S protein showed reduced entry into host cells compared to virus with wild-type S protein. These unexpected findings suggest that MERS-CoV adaptation during human-to-human spread may be driven by host immunological pressure such as neutralizing antibodies, resulting in reduced affinity to host receptor, and thereby impairs viral fitness and virulence, rather than positive selection for a better affinity to CD26.
Autophagy is an important antimicrobial effector process that defends against Mycobacterium tuberculosis (Mtb), the human pathogen causing tuberculosis (TB). MicroRNAs (miRNAs), endogenous noncoding RNAs, are involved in various biological functions and act as post-transcriptional regulators to target mRNAs. The process by which miRNAs affect antibacterial autophagy and host defense mechanisms against Mtb infections in human monocytes and macrophages is largely uncharacterized. In this study, we show that Mtb significantly induces the expression of MIR144*/hsa-miR-144-5p, which targets the 3'-untranslated region of DRAM2 (DNA damage regulated autophagy modulator 2) in human monocytes and macrophages. Mtb infection downregulated, whereas the autophagy activators upregulated, DRAM2 expression in human monocytes and macrophages by activating AMP-activated protein kinase. In addition, overexpression of MIR144* decreased DRAM2 expression and formation of autophagosomes in human monocytes, whereas inhibition of MIR144* had the opposite effect. Moreover, the levels of MIR144* were elevated, whereas DRAM2 levels were reduced, in human peripheral blood cells and tissues in TB patients, indicating the clinical significance of MIR144* and DRAM2 in human TB. Notably, DRAM2 interacted with BECN1 and UVRAG, essential components of the autophagic machinery, leading to displacement of RUBCN from the BECN1 complex and enhancement of Ptdlns3K activity. Furthermore, MIR144* and DRAM2 were critically involved in phagosomal maturation and enhanced antimicrobial effects against Mtb. Our findings identify a previously unrecognized role of human MIR144* in the inhibition of antibacterial autophagy and the innate host immune response to Mtb. Additionally, these data reveal that DRAM2 is a key coordinator of autophagy activation that enhances antimicrobial activity against Mtb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.