Background: Observational studies of the ongoing coronavirus disease 2019 (COVID-19) outbreak suggest that a 'cytokine storm' is involved in the pathogenesis of severe illness. However, the molecular mechanisms underlying the altered pathological inflammation in COVID-19 are largely unknown. We report here that toll-like receptor (TLR) 4-mediated inflammatory signaling molecules are upregulated in peripheral blood mononuclear cells (PBMCs) from COVID-19 patients, compared with healthy controls (HC). Methods: A total of 48 subjects including 28 COVID-19 patients (8 severe/critical vs. 20 mild/ moderate cases) admitted to Chungnam National University Hospital, and age/sex-matched 20 HC were enrolled in this study. PBMCs from the subjects were processed for nCounter Human Immunology gene expression assay to analyze the immune related transcriptome profiles. Recombinant proteins of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were used to stimulate the PBMCs and monocyte-derived macrophages, and real-time polymerase chain reaction was performed to quantify the mRNA expressions of the proinflammatory cytokines/chemokines. Results: Among the most highly increased inflammatory mediators in severe/critically ill patients, S100A9, an alarmin and TLR4 ligand, was found as a noteworthy biomarker, because it inversely correlated with the serum albumin levels. We also observed that recombinant S2 and nucleocapsid proteins of SARS-CoV-2 significantly increased proinflammatory cytokines/chemokines and S100A9 in human primary PBMCs. Conclusion: These data support a link between TLR4 signaling and pathological inflammation during COVID-19 and contribute to develop therapeutic approaches through targeting TLR4-mediated inflammation.
Background The selection of reference genes is essential for quantifying gene expression. Theoretically they should be expressed stably and not regulated by experimental or pathological conditions. However, identification and validation of reference genes for human cancer research are still being regarded as a critical point, because cancerous tissues often represent genetic instability and heterogeneity. Recent pan-cancer studies have demonstrated the importance of the appropriate selection of reference genes for use as internal controls for the normalization of gene expression; however, no stably expressed, consensus reference genes valid for a range of different human cancers have yet been identified. Results In the present study, we used large-scale cancer gene expression datasets from The Cancer Genome Atlas (TCGA) database, which contains 10,028 (9,364 cancerous and 664 normal) samples from 32 different cancer types, to confirm that the expression of the most commonly used reference genes is not consistent across a range of cancer types. Furthermore, we identified 38 novel candidate reference genes for the normalization of gene expression, independent of cancer type. These genes were found to be highly expressed and highly connected to relevant gene networks, and to be enriched in transcription-translation regulation processes. The expression stability of the newly identified reference genes across 29 cancerous and matched normal tissues were validated via quantitative reverse transcription PCR (RT-qPCR). Conclusions We reveal that most commonly used reference genes in current cancer studies cannot be appropriate to serve as representative control genes for quantifying cancer-related gene expression levels, and propose in this study three potential reference genes ( HNRNPL , PCBP1 , and RER1 ) to be the most stably expressed across various cancerous and normal human tissues. Electronic supplementary material The online version of this article (10.1186/s12859-019-2809-2) contains supplementary material, which is available to authorized users.
Observational studies of the ongoing coronavirus disease 2019 (COVID-19) outbreak suggest that a cytokine storm is involved in the pathogenesis of severe illness. However, the molecular mechanisms underlying the altered pathological inflammation in COVID-19 are largely unknown. We report here that toll-like receptor (TLR) 4-mediated inflammatory signaling molecules are upregulated in peripheral blood mononuclear cells (PBMCs) from COVID-19 patients, compared with healthy controls. Among the most highly increased inflammatory mediators in severe/critically ill patients, S100A9, an alarmin and TLR4 ligand, was found as a noteworthy biomarker, because it inversely correlated with the serum albumin levels. These data support a link between TLR4 signaling and pathological inflammation during COVID-19 and contribute to develop therapeutic approaches through targeting TLR4-mediated inflammation.
Infection with rapidly growing nontuberculous mycobacteria is emerging as a global health issue; however, key host factors remain elusive. Here, we investigated the characteristic immune profiles of peripheral blood mononuclear cells (PBMCs) from patients infected with Mycobacteroides abscessus subsp. abscessus (Mabc) and M. abscessus subsp. massiliense (Mmass). Using an integrated analysis of global mRNA and microRNA expression profiles, we found that several inflammatory cytokines/chemokines [interleukin (IL)-1β, IL-6, C-X-C motif chemokine ligand 2, and C-C motif chemokine ligand 2] and miR-144-3p were significantly upregulated in PBMCs from patients compared with those from healthy controls (HCs). Notably, there was a strong correlation between the expression levels of miR-144-3p and proinflammatory cytokines/chemokines. Similarly, upregulated expression of miR-144-3p and proinflammatory cytokines/chemokines was found in macrophages and lungs from mice after infection with Mabc and Mmass. We showed that the expression of negative regulators of inflammation (SARM1 and TNIP3) was significantly downregulated in PBMCs from the patients, although they were not putative targets of miR-144-3p. Furthermore, overexpression of miR-144-3p led to a marked increase in proinflammatory cytokines/chemokines and promoted bacterial growth in macrophages. Together, our results highlight the importance of miR-144-3p linking to pathological inflammation during M. abscessus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.