Weathering behavior of kaolinite was studied in batch systems under geochemical conditions characteristic of tank waste released to the vadose zone at the Hanford Site, WA (0.05 M Al(T), 2 M Na+, 1 M N03-, pH approximately 14, Cs+ and Sr2+ present as co-contaminants). Time series experiments were conducted from 0 to 369 d, with initial Cs+ and Sr2+ concentrations ranging from 10(-5) to 10(-3) M. Dissolution of kaolinite increased soluble Si and Al to maximum levels at 7 d (Cs and Sr concentrations of 10(-5) and 10(-4) M) or 33 d (Cs and Sr concentrations of 10(-3) M). Subsequent precipitation of Si and Al was coupled to the formation of oxalate-extractable solids that incorporated Cs and Sr. Strontium sorption was nearly complete within 24 h for initial Sr concentrations (Sr0) < or = 10(-4) whereas Cs uptake increased over the full year of the experiment for all initial Cs concentrations. Spectroscopic analyses revealed neoformed solids including the zeolite Na-Al silicate (Al-chabazite), and feldspathoids sodium aluminum nitrate silicate (NO3-sodalite), and sodium aluminum nitrate silicate hydrate (NO3-cancrinite), which can incorporate Cs. Single-pulse 27Al solid-state nuclear magnetic resonance (NMR) spectroscopyyielded first-order rate constants (k)for mineral transformation that decreased from 3.5 x 10(-3) to 2 x 10(-3) d(-1) as Cs and Sr concentrations were increased from 10(-5) to 10(-3) M. Discrete strontium silicate solids were also observed. The incongruent dissolution of kaolinite promoted the sequestration of contaminants into increasingly recalcitrant solid phases over the 1-yr time period.
Background The selection of reference genes is essential for quantifying gene expression. Theoretically they should be expressed stably and not regulated by experimental or pathological conditions. However, identification and validation of reference genes for human cancer research are still being regarded as a critical point, because cancerous tissues often represent genetic instability and heterogeneity. Recent pan-cancer studies have demonstrated the importance of the appropriate selection of reference genes for use as internal controls for the normalization of gene expression; however, no stably expressed, consensus reference genes valid for a range of different human cancers have yet been identified. Results In the present study, we used large-scale cancer gene expression datasets from The Cancer Genome Atlas (TCGA) database, which contains 10,028 (9,364 cancerous and 664 normal) samples from 32 different cancer types, to confirm that the expression of the most commonly used reference genes is not consistent across a range of cancer types. Furthermore, we identified 38 novel candidate reference genes for the normalization of gene expression, independent of cancer type. These genes were found to be highly expressed and highly connected to relevant gene networks, and to be enriched in transcription-translation regulation processes. The expression stability of the newly identified reference genes across 29 cancerous and matched normal tissues were validated via quantitative reverse transcription PCR (RT-qPCR). Conclusions We reveal that most commonly used reference genes in current cancer studies cannot be appropriate to serve as representative control genes for quantifying cancer-related gene expression levels, and propose in this study three potential reference genes ( HNRNPL , PCBP1 , and RER1 ) to be the most stably expressed across various cancerous and normal human tissues. Electronic supplementary material The online version of this article (10.1186/s12859-019-2809-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.