Weathering behavior of kaolinite was studied in batch systems under geochemical conditions characteristic of tank waste released to the vadose zone at the Hanford Site, WA (0.05 M Al(T), 2 M Na+, 1 M N03-, pH approximately 14, Cs+ and Sr2+ present as co-contaminants). Time series experiments were conducted from 0 to 369 d, with initial Cs+ and Sr2+ concentrations ranging from 10(-5) to 10(-3) M. Dissolution of kaolinite increased soluble Si and Al to maximum levels at 7 d (Cs and Sr concentrations of 10(-5) and 10(-4) M) or 33 d (Cs and Sr concentrations of 10(-3) M). Subsequent precipitation of Si and Al was coupled to the formation of oxalate-extractable solids that incorporated Cs and Sr. Strontium sorption was nearly complete within 24 h for initial Sr concentrations (Sr0) < or = 10(-4) whereas Cs uptake increased over the full year of the experiment for all initial Cs concentrations. Spectroscopic analyses revealed neoformed solids including the zeolite Na-Al silicate (Al-chabazite), and feldspathoids sodium aluminum nitrate silicate (NO3-sodalite), and sodium aluminum nitrate silicate hydrate (NO3-cancrinite), which can incorporate Cs. Single-pulse 27Al solid-state nuclear magnetic resonance (NMR) spectroscopyyielded first-order rate constants (k)for mineral transformation that decreased from 3.5 x 10(-3) to 2 x 10(-3) d(-1) as Cs and Sr concentrations were increased from 10(-5) to 10(-3) M. Discrete strontium silicate solids were also observed. The incongruent dissolution of kaolinite promoted the sequestration of contaminants into increasingly recalcitrant solid phases over the 1-yr time period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.