Background: This study aimed to develop a simple and one-off olfactory screening test, the sniffing bead system, for general clinical use in older adults. Methods: In this cross-sectional study, geriatric subjects (aged > 50 years) who underwent neurocognitive and olfactory function tests were included. Overall, 137 subjects were enrolled, and the study was conducted at Chung-Ang University, Seoul, Korea. Olfactory function was measured by obtaining the scores of the sniffing bead system using 2-phenylethyl alcohol, n-butanol, and the YSK olfactory function test. Time taken for each olfactory function test was also measured. Results: The score of the 2-phenylethyl alcohol sniffing bead test was 2.58 ± 1.52, which was significantly associated with the YSK_threshold (2.41 ± 1.79) (p < 0.001, Pearson's correlation coefficient = 0.429), YSK_identification (8.93 ± 3.25) (p = 0.014, Pearson's correlation coefficient = 0.208) and YSK_threshold-discrimination-identification (17.46 ± 5.49) (p < 0.001, Pearson's correlation coefficient = 0.316) test scores. In the normal cognitive function group, YSK_threshold ( p < 0.001, Pearson's correlation coefficient = 0.479 ) , YSK_identification ( p = 0.003, Pearson's correlation coefficient = 0.316 ), and YSK_threshold-discrimination-identification (p < 0.001, Pearson's correlation coefficient = 0.429) were significantly correlated with the scores of the 2-phenylethyl alcohol sniffing bead system. In the impaired cognitive function group, the YSK_threshold (p = 0.002, Pearson's correlation coefficient = 0.415 ) and YSK_ threshold-discrimination-identification (p = 0.004, Pearson's correlation coefficient = 0.385 ) were significantly correlated with the scores of the 2-phenylethyl alcohol sniffing bead system. Time taken for the 2-phenylethyl alcohol sniffing bead system was 5.00 ± 1.51 min, which was significantly lower than that for the YSK_threshold-discrimination-identification (20.43 ± 5.29 min) (p < 0.001). The scores of the 2-phenylethyl alcohol sniffing bead system were significantly correlated with those of the n-butanol sniffing bead system (3.50 ± 1.21) (p < 0.001, Pearson's correlation coefficient = 0.315). Conclusions: This sniffing bead system was specifically designed for screening olfactory function in older adults, and it may allow for the rapid and accurate assessment of olfactory dysfunction.
Background: This study aimed to develop a simple and one-off olfactory screening test, the sniffing bead system, for general clinical use in older adults. Methods: In this cross-sectional study, geriatric subjects (aged > 50 years) who underwent neurocognitive and olfactory function tests were included. Overall, 137 subjects were enrolled, and the study was conducted at Chung-Ang University, Seoul, Korea. Olfactory function was measured by obtaining the scores of the sniffing bead system using 2-phenylethyl alcohol, n-butanol, and the YSK olfactory function test. Time taken for each olfactory function test was also measured.Results: The score of the 2-phenylethyl alcohol sniffing bead test was 2.58 ± 1.52, which was significantly associated with the YSK_threshold (2.41 ± 1.79) (p < 0.001, Pearson's correlation coefficient = 0.429), YSK_identification (8.93 ± 3.25) (p = 0.014, Pearson's correlation coefficient = 0.208) and YSK_threshold-discrimination-identification (17.46 ± 5.49) (p < 0.001, Pearson's correlation coefficient = 0.316) test scores. In the normal cognitive function group, YSK_threshold (p < 0.001, Pearson's correlation coefficient = 0.479), YSK_identification (p = 0.003, Pearson's correlation coefficient = 0.316), and YSK_threshold-discrimination-identification (p < 0.001, Pearson's correlation coefficient = 0.429) were significantly correlated with the scores of the 2-phenylethyl alcohol sniffing bead system. In the impaired cognitive function group, the YSK_threshold (p = 0.002, Pearson's correlation coefficient = 0.415) and YSK_ threshold-discrimination-identification (p = 0.004, Pearson's correlation coefficient = 0.385) were significantly correlated with the scores of the 2-phenylethyl alcohol sniffing bead system. Time taken for the 2-phenylethyl alcohol sniffing bead system was 5.00 ± 1.51 min, which was significantly lower than that for the YSK_threshold-discrimination-identification (20.43 ± 5.29 min) (p < 0.001). The scores of the 2-phenylethyl alcohol sniffing bead system were significantly correlated with those of the n-butanol sniffing bead system (3.50 ± 1.21) (p < 0.001, Pearson's correlation coefficient = 0.315). Conclusions: This sniffing bead system was specifically designed for screening olfactory function in older adults, and it may allow for the rapid and accurate assessment of olfactory dysfunction.
The differential effect of meteorological factors and air pollutants on pediatric epistaxis in younger and older children has not been evaluated. We evaluated the distribution of pediatric epistaxis cases between younger (0–5 years) and older children (6–18 years). Subsequently, we assessed and compared the effects of meteorological variables and the concentration of particulate matter measuring ≤ 10 μm in diameter (PM10) on hospital epistaxis presentation in younger and older children. This retrospective study included pediatric patients (n = 326) who presented with spontaneous epistaxis between January 2015 and August 2019. Meteorological conditions and PM10 concentration were the exposure variables, and data were obtained from Korea Meteorological Administration 75. The presence and cumulative number of epistaxis presentations per day were considered outcome variables. Air temperature, wind speed, sunshine duration, and PM10 concentration in younger children, and sunshine duration and air pressure in older children, significantly correlated with the presence of and cumulative number of epistaxis presentations per day. The PM10 concentration was not a significant factor in older children. Thus, meteorological factors and PM10 concentration may differentially affect epistaxis in younger (0–5-year-olds) and older (6–18-year-olds) children. Risk factors for pediatric epistaxis should be considered according to age.
Foreign bodies pose a diagnostic challenge to clinicians, and nasal foreign bodies have the potential to lead to significant morbidity. Although foreign bodies in the nasal cavity are a commonly encountered problem in pediatric patients, a foreign body in the nasal cavity not associated with a trauma history is rare in adults. We recently experienced a 35-year-old man who presented with a foreign body in his right nasal cavity and anterior tooth pain. He was not sure what the material was, and we were not able to confirm the material type preoperatively. However, we found that a very large and thick material was impacted and totally obstructed the right anterior nasal cavity. We surgically removed it as a bone block and confirmed postoperatively that the material was glass. This case provided several lessons, and we would like to share our experience.
Background: This study aimed to develop a simple and one-off olfactory screening test, the sniffing bead system, for general clinical use in older adults. Methods: In this cross-sectional study, geriatric subjects (aged > 50 years) who underwent neurocognitive and olfactory function tests were included. Overall, 137 subjects were enrolled, and the study was conducted at Chung-Ang University, Seoul, Korea. Olfactory function was measured by obtaining the scores of the sniffing bead system using 2-phenylethyl alcohol, n-butanol, and the YSK olfactory function test. Time taken for each olfactory function test was also measured.Results: The score of the 2-phenylethyl alcohol sniffing bead test was 2.58 ± 1.52, which was significantly associated with the YSK_threshold (2.41 ± 1.79) (p < 0.001, Pearson's correlation coefficient = 0.429), YSK_identification (8.93 ± 3.25) (p = 0.014, Pearson's correlation coefficient = 0.208) and YSK_threshold-discrimination-identification (17.46 ± 5.49) (p < 0.001, Pearson's correlation coefficient = 0.316) test scores. In the normal cognitive function group, YSK_threshold (p < 0.001, Pearson's correlation coefficient = 0.479), YSK_identification (p = 0.003, Pearson's correlation coefficient = 0.316), and YSK_threshold-discrimination-identification (p < 0.001, Pearson's correlation coefficient = 0.429) were significantly correlated with the scores of the 2-phenylethyl alcohol sniffing bead system. In the impaired cognitive function group, the YSK_threshold (p = 0.002, Pearson's correlation coefficient = 0.415) and YSK_ threshold-discrimination-identification (p = 0.004, Pearson's correlation coefficient = 0.385) were significantly correlated with the scores of the 2-phenylethyl alcohol sniffing bead system. Time taken for the 2-phenylethyl alcohol sniffing bead system was 5.00 ± 1.51 min, which was significantly lower than that for the YSK_threshold-discrimination-identification (20.43 ± 5.29 min) (p < 0.001). The scores of the 2-phenylethyl alcohol sniffing bead system were significantly correlated with those of the n-butanol sniffing bead system (3.50 ± 1.21) (p < 0.001, Pearson's correlation coefficient = 0.315). Conclusions: This sniffing bead system was specifically designed for screening olfactory function in older adults, and it may allow for the rapid and accurate assessment of olfactory dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.