Since the use of magnetic nanocrystals as probes for biomedical system is attractive, it is important to develop optimal synthetic protocols for high-quality magnetic nanocrystals and to have the systematic understanding of their nanoscale properties. Here we present the development of a synthetically controlled magnetic nanocrystal model system that correlates the nanoscale tunabilities in terms of size, magnetism, and induced nuclear spin relaxation processes. This system further led to the development of high-performance nanocrystal-antibody probe systems for the diagnosis of breast cancer cells via magnetic resonance imaging.
The unique properties of magnetic nanocrystals provide them with high potential as key probes and vectors in the next generation of biomedical applications. Although superparamagnetic iron oxide nanocrystals have been extensively studied as excellent magnetic resonance imaging (MRI) probes for various cell trafficking, gene expression, and cancer diagnosis, further development of in vivo MRI applications has been very limited. Here, we describe in vivo diagnosis of cancer, utilizing a well-defined magnetic nanocrystal probe system with multiple capabilities, such as small size, strong magnetism, high biocompatibility, and the possession of active functionality for desired receptors. Our magnetic nanocrystals are conjugated to a cancer-targeting antibody, Herceptin, and subsequent utilization of these conjugates as MRI probes has been successfully demonstrated for the monitoring of in vivo selective targeting events of human cancer cells implanted in live mice. Further conjugation of these nanocrystal probes with fluorescent dye-labeled antibodies enables both in vitro and ex vivo optical detection of cancer as well as in vivo MRI, which are potentially applicable for an advanced multimodal detection system. Our study finds that high performance in vivo MR diagnosis of cancer is achievable by utilizing improved and multifunctional material properties of iron oxide nanocrystal probes.
Insulin signaling in the hypothalamus plays a role in maintaining body weight. Studies suggest that the forkhead transcription factor Foxo1 is an important mediator of insulin signaling in peripheral tissues. Here we demonstrate that in normal mice, hypothalamic Foxo1 expression is reduced by the anorexigenic hormones insulin and leptin. These hormones' effects on feeding are inhibited when hypothalamic Foxo1 is activated, establishing a new signaling pathway through which insulin and leptin regulate food intake in hypothalamic neurons. Moreover, activation of Foxo1 in the hypothalamus increases food intake and body weight, whereas inhibition of Foxo1 decreases both. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti-related protein through the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway, but suppresses the transcription of anorexigenic proopiomelanocortin by antagonizing the activity of signal transducer-activated transcript-3 (STAT3). Our data suggest that hypothalamic Foxo1 is an important regulator of food intake and energy balance.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of the subtilases that promotes the internalization and degradation of LDL receptor in liver and thereby controls the level of LDL cholesterol in plasma. Here, we show that the expression of PCSK9 in HepG2 cells is completely dependent on the absence or presence of sterols. The minimal promoter region of the PCSK9 gene contains a sterol-regulatory element (SRE), which makes the transcription of PCSK9 dependent on sterols. Expression of nuclear forms of sterol-regulatory element binding protein-1 (SREBP-1) and SREBP-2 dramatically increased the promoter activity of PCSK9. In vitro-translated nuclear forms of SREBPs showed interactions with SRE, whereas mutations in SRE abolished their binding. In vivo studies in mice showed that Pcsk9 protein and mRNA were decreased significantly by fasting and increased by refeeding. However, supplementation with 2% cholesterol in the diet prevented the increase in Pcsk9. The amounts of Pcsk9 mRNA in livers of refed mice showed correlated regulation by the changes in the nuclear form of Srebp-2. In summary, it is suggested that the expression of PCSK9 is regulated by sterol at the transcriptional level in HepG2 cells and that both SREBP-1 and SREBP-2 can transcriptionally activate PCSK9 via SRE in its proximal promoter region in vitro. However, in vivo, it is suggested that the sterol-dependent regulation of PCSK9 is mediated predominantly by SREBP-2. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of the proteinase K subfamily of subtilisin serine proteases of which the gain-of-function mutations cause hypercholesterolemia (1-3). PCSK9 was independently identified as one of the genes that are regulated by sterol-regulatory element binding proteins (SREBPs) (4, 5). The SREBPs are members of the basic helix-loop-helix leucine zipper family of transcription factors that regulate the expression of the target genes by binding to the sterolregulatory elements (SREs) in their promoter regions (6). Using microarrays hybridized with RNA from livers of mice that either overexpressed nuclear forms of human SREBPs (transgenic model) or lacked SREBP-activating protein (knockout model), PCSK9 was identified as a SREBP target gene. Soon after the first cloning of this gene, with its relationship to neural apoptosis and liver regeneration, studies focused on its relationship with the regulation of cholesterol in plasma. Subsequently, the loss-of-function mutations of PCSK9 have been reported to decrease LDL cholesterol level (7-9) and reduce the risk of coronary heart disease (10). The definite evidence for a role of PCSK9 in LDL metabolism was revealed by a set of in vivo animal experiments. Adenovirus-mediated overexpression of PCSK9 reduced the amount of low density lipoprotein receptor (LDLR) in livers posttranscriptionally (11,12), whereas the amount of LDLR increased significantly in livers of Pcsk9 knockout mice (13). The mechanism by which PCSK9 reduces LDLR suggests that secreted PCSK9 in plas...
Recently, hepatic peroxisome proliferator-activated receptor (PPAR)γ has been implicated in hepatic lipid accumulation. We found that the C3H mouse strain does not express PPARγ in the liver and, when subject to a high-fat diet, is resistant to hepatic steatosis, compared with C57BL/6 (B6) mice. Adenoviral PPARγ2 injection into B6 and C3H mice caused hepatic steatosis, and microarray analysis demonstrated that hepatic PPARγ2 expression is associated with genes involved in fatty acid transport and the triglyceride synthesis pathway. In particular, hepatic PPARγ2 expression significantly increased the expression of monoacylglycerol O-acyltransferase 1 (MGAT1). Promoter analysis by luciferase assay and electrophoretic mobility shift assay as well as chromatin immunoprecipitation assay revealed that PPARγ2 directly regulates the MGAT1 promoter activity. The MGAT1 overexpression in cultured hepatocytes enhanced triglyceride synthesis without an increase of PPARγ expression. Importantly, knockdown of MGAT1 in the liver significantly reduced hepatic steatosis in 12-wk-old high-fat-fed mice as well as ob/ob mice, accompanied by weight loss and improved glucose tolerance. These results suggest that the MGAT1 pathway induced by hepatic PPARγ is critically important in the development of hepatic steatosis during dietinduced obesity.nonalcoholic fatty liver disease | adenoviral expression | SREBP1c | ChREBP | TLR4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.