Mo-based van der Waals heterojunction p-n diodes with p-type α-MoTe2 and n-type MoS2 are fabricated on glass, and demonstrate excellent static and dynamic device performances at a low voltage of 5 V, with an ON/OFF current ratio higher than 10(3) , ideality factors of 1.06, dynamic rectification at a high frequency of 1 kHz, high photoresponsivity of 322 mA W(-1) , and an external quantum efficiency of 85% under blue-light illumination.
The photocurrent conversions of transition metal dichalcogenide nanosheets are unprecedentedly impressive, making them great candidates for visible range photodetectors. Here we demonstrate a method for fabricating micron-thick, flexible films consisting of a variety of highly separated transition metal dichalcogenide nanosheets for excellent band-selective photodetection. Our method is based on the non-destructive modification of transition metal dichalcogenide sheets with amine-terminated polymers. The universal interaction between amine and transition metal resulted in scalable, stable and high concentration dispersions of a single to a few layers of numerous transition metal dichalcogenides. Our MoSe2 and MoS2 composites are highly photoconductive even at bending radii as low as 200 μm on illumination of near infrared and visible light, respectively. More interestingly, simple solution mixing of MoSe2 and MoS2 gives rise to blended composite films in which the photodetection properties were controllable. The MoS2/MoSe2 (5:5) film showed broad range photodetection suitable for both visible and near infrared spectra.
We experimentally demonstrate a new compact surrounding refractive-index sensor using a MMF-CSF-MMF (MCM) structure. The evanescent waves in the coreless silica fibre (CSF) region can directly interact with the surrounding medium. Due to its distinctive resonant spectral feature, the MCM sensor showed a high sensitivity of 4.37 × 10 −4 for a refractive index range of 1.30 to 1.44, suggesting that the proposed device may be suitable for a wide range of biomedical and chemical sensor applications.
This outbreak points to the importance of drinking water quality management in group facilities where underground water is used and emphasizes the need for periodic sanitation and inspection to prevent possible waterborne outbreaks.
We propose a novel design of highly birefringent optical fiber composed of a central elliptical air hole, a circumferential elliptical ring core, and a circular cladding. The proposed waveguide structure is predicted to produce a linear birefringence higher by an order of magnitude than the solid elliptical core fiber. The large index contrast between the central air and germanosilica elliptical ring core is mainly attributed to the high birefringence and its characteristics are theoretically analyzed in terms of its waveguide parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.