Solid-state interdiffusion reactions at Al/Ni interfaces in multilayer films have been studied using differential scanning calorimetry, cross-sectional transmission electron microscopy/microanalysis, and thin-film x-ray diffraction. Multilayer films with various modulation periods and an overall atomic concentration ratio of three Al to one Ni were prepared by alternate electron-beam evaporation in high- and ultrahigh-vacuum systems. We show calorimetric, microstructural, and compositional evidence that interdiffusion of Al and Ni leading to solid solutions precedes the formation of intermetallic crystalline compounds. Isothermal calorimetry indicates that Al3Ni subsequently nucleates in the interdiffused region at preferred sites. Calorimetric analyses also suggest that nucleation sites quickly saturate in the early stage of Al3Ni formation and that the nucleation site density strongly depends on the grain sizes of the deposited films. After coalescence into a continuous layer at the interface, Al3Ni thickens through a diffusion-limited process, in agreement with previous reports. A kinetic model is developed which yields calculated calorimetric traces in good agreement with experimental data. Our results suggest the importance of prenucleation interdiffusion, in addition to nucleation, in the selection of the first phase during thin-film reactions.
Self-propagating explosive reactions, with a reaction front speed of about 4 m/s, have been observed in free-standing polycrystalline Al/Ni multilayer thin films. The resultant phases and microstructures are compared with those obtained by conventional thermal annealing. We show evidence which indicates that melting occurred in the explosive reactions of films with an atomic concentration ratio of 3Al:1Ni. It is also observed that the propensity of multilayer films to undergo explosive reactions is dependent on the modulation length of the film as well as on the ambient temperature. These observations are interpreted with a simple model based on the rate balance between the rates of heat generation and heat dissipation.
The reaction between solid layers to form a product phase has been studied using scanning calorimetry of multilayer Nb/Al and Ni/amorphous-Si thin films. The most striking feature for both materials systems is the occurrence of two maxima in the reaction rate during the formation of a single product phase, suggesting a two step growth process. A model has been developed in which the first step is taken to be the nucleation and two-dimensional growth to coalescence of the product phase, in the plane of the initial interface. The second step is taken to be the thickening of the product layer by growth perpendicular to the interface plane. The success of this simple model in describing the principal features of the experimental results on two different materials systems suggests that nucleation is an important aspect of phase formation and selection in these thin-film reactions.
We report that the ion implantation of a small dose of Mo into a silicon substrate before the deposition of a thin film of Ti lowers the temperature required to form the commercially important low resistivity C54 -TiSi 2 phase by 100-150°C. A lesser improvement is obtained with W implantation. In addition, a sharp reduction in the dependence of C54 formation on the geometrical size of the silicided structure is observed. The enhancement in C54 formation observed with the ion implantation of Mo is not explained by ion mixing of the Ti/Si interface or implant-induced damage. Rather, it is attributed to an enhanced nucleation of C54 -TiSi 2 out of the precursor high resistance C49-TiSi 2 phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.