Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review.
The photocatalytic conversion of two b-blockers, namely atenolol and propranolol in aqueous TiO 2 suspensions was investigated. Irradiation was provided by a solar simulator equipped with 1 kW Xe-OP lamp, while emphasis was given on the effect of catalyst type and loading (50-3000 mg/L), substrate concentration (5-30 mg/L), initial solution pH (3-10), and the addition of H 2 O 2 (0.07-1.4 mM) and oxygen on degradation in two matrices (i.e. pure water and treated municipal effluent). Of the various catalysts tested, Degussa P25 was highly active yielding up to about 80% conversion after 120 min of reaction. In general, conversion was favored at lower substrate concentrations, near-neutral pH values and in the absence of other organics (i.e. in pure water), while the addition of H 2 O 2 did not accelerate kinetics which seem to follow the Langmuir-Hinshelwood model. Toxicity to D. magna was evaluated prior to and after photocatalytic treatment. Toxicity increased during the early stages of the reaction and then progressively decreased upon the elimination of the substrate and its reaction intermediates, with propranolol being more toxic than atenolol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.