We used a multimodal nonlinear optics microscopy, specifically two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG∕THG) microscopies, to observe pathological conditions of ovarian tissues obtained from human samples. We show that strong TPEF + SHG + THG signals can be obtained in fixed samples stained with hematoxylin and eosin (H&E) stored for a very long time, and that H&E staining enhanced the THG signal. We then used the multimodal TPEF-SHG-THG microscopies in a stored file of H&E stained samples of human ovarian cancer to obtain complementary information about the epithelium∕stromal interface, such as the transformation of epithelium surface (THG) and the overall fibrillary tissue architecture (SHG). This multicontrast nonlinear optics microscopy is able to not only differentiate between cancerous and healthy tissue, but can also distinguish between normal, benign, borderline, and malignant specimens according to their collagen disposition and compression levels within the extracellular matrix. The dimensions of the layers of epithelia can also be measured precisely and automatically. Our data demonstrate that optical techniques can detect pathological changes associated with ovarian cancer.
BackgroundNonlinear optical (NLO) microscopy techniques have potential to improve the early detection of epithelial ovarian cancer. In this study we showed that multimodal NLO microscopies, including two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), third-harmonic generation (THG) and fluorescence lifetime imaging microscopy (FLIM) can detect morphological and metabolic changes associated with ovarian cancer progression.Methodology/Principal FindingsWe obtained strong TPEF + SHG + THG signals from fixed samples stained with Hematoxylin & Eosin (H&E) and robust FLIM signal from fixed unstained samples. Particularly, we imaged 34 ovarian biopsies from different patients (median age, 49 years) including 5 normal ovarian tissue, 18 serous tumors and 11 mucinous tumors with the multimodal NLO platform developed in our laboratory. We have been able to distinguish adenomas, borderline, and adenocarcinomas specimens. Using a complete set of scoring methods we found significant differences in the content, distribution and organization of collagen fibrils in the stroma as well as in the morphology and fluorescence lifetime from epithelial ovarian cells.Conclusions/SignificanceNLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for serous and mucinous ovarian tumors. The results provide a basis to interpret future NLO images of ovarian tissue and lay the foundation for future in vivo optical evaluation of premature ovarian lesions.
In this study we showed that second-harmonic generation (SHG) microscopy combined with precise methods for images evaluation can be used to detect structural changes in the human ovarian stroma. Using a set of scoring methods (alignment of collagen fibers, anisotropy, and correlation), we found significant differences in the distribution and organization of collagen fibers in the stroma component of serous, mucinous, endometrioid and mixed ovarian tumors as compared with normal ovary tissue. This methodology was capable to differentiate between cancerous and healthy tissue, with clear cut distinction between normal, benign, borderline, and malignant tumors of serous type. Our results indicated that the combination of different image-analysis approaches presented here represent a powerful tool to investigate collagen organization and extracellular matrix remodeling in ovarian tumors.
Three cases of intravenous leiomyomatosis (IVL) of the uterus, a rare benign smooth-muscle tumor, are described. A preoperative diagnosis of IVL was not made in any of the patients, all of which presented with a pelvic mass with the presumptive diagnosis of leiomyoma. Surgical exploration confirmed the presence of uterine mass and two of the three cases showed extra-uterine extension into the ovarian or uterine veins. Histological examination demonstrated a fascicular pattern of bland spindle-shaped smooth-muscle cells, which extended to veins inside the myometrium or to extrauterine veins. This was confirmed by immunohistochemical stain for desmin and factor VIII. Despite their histological benignity, these lesions have a tendency to metastasize and are closely related to the conditions called "benign metastasizing leiomyoma" and "intracaval mass and cardiac extension". The primary treatment of IVL is hysterectomy and excision of any extrauterine tumor, when technically feasible. Anti-estrogenic therapy has been suggested as potentially useful in controlling of unresectable tumor. According to the literature, the follow-up must be long and periodic postoperative ultrasonic or magnetic nuclear resonance imaging studies may be useful in detecting growth of residual intravascular tumor.
Abstract. We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.