SummaryWe report here the production of the bacterial polyester, polyhydroxybutyrate (PHB), in the crop species sugarcane ( Saccharum spp. hybrids). The PHB biosynthesis enzymes of Ralstonia eutropha [ β -ketothiolase (PHAA), acetoacetyl-reductase (PHAB) and PHB synthase (PHAC)]were expressed in the cytosol or targeted to mitochondria or plastids. PHB accumulated in cytosolic lines at trace amounts, but was not detected in mitochondrial lines. In plastidic lines, PHB accumulated in leaves to a maximum of 1.88% of dry weight without obvious deleterious effects. Epifluorescence and electron microscopy of leaf sections from these lines revealed that PHB granules were visible in plastids of most cell types, except mesophyll cells. The concentration of PHB in culm internodes of plastidic lines was substantially lower than in leaves. Western blot analysis of these lines indicated that expression of the PHB biosynthesis proteins was not limiting in culm internodes. Epifluorescence microscopy of culm internode sections from plastidic lines showed that PHB granules were visible in most cell types, except photosynthetic cortical cells in the rind, and that the lower PHB concentration in culm internodes was probably a result of dilution of PHB-containing cells by the large number of cells with little or no PHB. We discuss strategies for producing PHB in mitochondria and mesophyll cell plastids, and for increasing PHB yields in culms.
Summary Polyhydroxybutyrate (PHB) is a bacterial polyester that has properties similar to some petrochemically produced plastics. Plant‐based production has the potential to make this biorenewable plastic highly competitive with petrochemical‐based plastics. We previously reported that transgenic sugarcane produced PHB at levels as high as 1.8% leaf dry weight without penalty to biomass accumulation, suggesting scope for improving PHB production in this species. In this study, we used different plant and viral promoters, in combination with multigene or single‐gene constructs to increase PHB levels. Promoters tested included the maize and rice polyubiquitin promoters, the maize chlorophyll A/B‐binding protein promoter and a Cavendish banana streak badnavirus promoter. At the seedling stage, the highest levels of polymer were produced in sugarcane plants when the Cavendish banana streak badnavirus promoter was used. However, in all cases, this promoter underwent silencing as the plants matured. The rice Ubi promoter enabled the production of PHB at levels similar to the maize Ubi promoter. The maize chlorophyll A/B‐binding protein promoter enabled the production of PHB to levels as high as 4.8% of the leaf dry weight, which is approximately 2.5 times higher than previously reported levels in sugarcane. This is the first time that this promoter has been tested in sugarcane. The highest PHB‐producing lines showed phenotypic differences to the wild‐type parent, including reduced biomass and slight chlorosis.
SummaryWe report here the results from a glasshouse trial of several transgenic sugarcane ( Saccharum spp. hybrids) lines accumulating the bacterial polyester polyhydroxybutyrate (PHB) in plastids. The aims of the trial were to characterize the spatio-temporal pattern of PHB accumulation at a whole-plant level, to identify factors limiting PHB production and to determine whether agronomic performance was affected adversely by PHB accumulation.Statistical analysis showed that a vertical PHB concentration gradient existed throughout the plant, the polymer concentration being lowest in the youngest leaves and increasing with leaf age. In addition, there was a horizontal gradient along the length of a leaf, with the PHB concentration increasing from the youngest part of the leaf (the base) to the oldest (the tip).The rank order of the lines did not change over time. Moreover, there was a uniform spatio-temporal pattern of relative PHB accumulation among the lines, despite the fact that they showed marked differences in absolute PHB concentration. Molecular analysis revealed that the expression of the transgenes encoding the PHB biosynthesis enzymes was apparently coordinated, and that there were good correlations between PHB concentration and the abundance of the PHB biosynthesis enzymes. The maximum recorded PHB concentration, 1.77% of leaf dry weight, did not confer an agronomic penalty. The plant height, total aerial biomass and culm-internode sugar content were not affected relative to controls. Although moderate PHB concentrations were achieved in leaves, the maximum total-plant PHB yield was only 0.79% (11.9 g PHB in 1.51 kg dry weight). We combine the insights from our statistical and molecular analyses to discuss possible strategies for increasing the yield of PHB in sugarcane.
SummaryIn planta production of the bioplastic polyhydroxybutyrate (PHB) is one important way in which plant biotechnology can address environmental problems and emerging issues related to peak oil. However, high biomass C 4 plants such as maize, switch grass and sugarcane develop adverse phenotypes including stunting, chlorosis and reduced biomass as PHB levels in leaves increase. In this study, we explore limitations to PHB accumulation in sugarcane chloroplasts using a systems biology approach, coupled with a metabolic model of C 4 photosynthesis. Decreased assimilation was evident in high PHB-producing sugarcane plants, which also showed a dramatic decrease in sucrose and starch content of leaves. A subtle decrease in the C/N ratio was found which was not associated with a decrease in total protein content. An increase in amino acids used for nitrogen recapture was also observed. Based on the accumulation of substrates of ATPdependent reactions, we hypothesized ATP starvation in bundle sheath chloroplasts. This was supported by mRNA differential expression patterns. The disruption in ATP supply in bundle sheath cells appears to be linked to the physical presence of the PHB polymer which may disrupt photosynthesis by scattering photosynthetically active radiation and/or physically disrupting thylakoid membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.