Laboratory experiments on granular flows using natural material were carried out in order to investigate the behaviour of granular flows passing over a break in slope. Sensors in the depositional area recorded the flow kinematics, while video footage permitted reconstruction of the deposit formation, which allowed investigation of the deposit shape as a function of the change in slope. We defined the slope-angle ratio as the proportion between slope angle in the depositional area and that of the channel. When the granular flow encounters the break in slope part of the flow front forms a bouncing clast zone due to elastic impact with the expansion box floor. During this process, part of the kinetic energy of the dense granular flow is transferred to elutriating fine ash, which subsequently forms turbulent ash cloud accompanying the granular flow until it comes to rest. Morphometric analysis of the deposits shows that they are all elliptical, with an almost constant minor axis and a variable major axis. The almost constant value of the minor axis relates to the spreading angle of flow at the end of the channel, which resembles the basal friction angle of the material. The variation of the major axis is interpreted to relate to the effect of competing inertial and frictional forces. This effect also reflects the partitioning of centripetal and tangential velocities, which changes as the flow passes over the break in slope. After normalization, morphometric data provided empirical relationships that highlight the dependence of runout from the product of slope-angle ratio and the difference in height between granular material release and deposit. The empirical relationships were tested against the runouts of hot avalanches formed during the 1944 ad eruption at Vesuvius, with differences among actual and calculated values are between 1.7 and 15 %. Velocity measurements of laboratory granular flows record deceleration paths at different breaks in slope. When normalized, the velocity data show third-order polynomial fit, highlighting a complex behaviour involving interplay between inertial and frictional forces. The theoretical velocity decays were tested against the data published for volcaniclastic debris flows of the 5–6 May 1998 event in the Sarno area. The comparison is very good for non-channelized debris flows, with significant differences between actual and calculated velocities for the channelized debris flows
Estudio de flujos granulares de tipo geológico por medio del simulador multisensor GRANFLOW-SIM 265 ResumenLas avalanchas y los flujos de escombro producidos por eventos catastróficos como las erupciones volcánicas se pueden entender como enormes flujos granulares. Debido a la imposibilidad de predicción y de la peligrosidad de dichos eventos por las altas temperaturas y las masas en movimiento involucradas, su estudio se limita a la observación remota y a la medición de los depósitos generados. La observación de estos fenómenos desde su inicio, es casi imposible de realizar dado que los tiempos de inicio y desarrollo son extremadamente cortos e imposibles de predecir con exactitud, además, debe llevarse a cabo desde una distancia considerable. El estudio del material depositado, ofrece importantes datos, pero sigue siendo un método indirecto para poder inferir la dinámica del flujo de escombros. En este artículo se describen las características del aparato GRANFLOW-SIM (Granular Flows Simulator), de sus sensores y el tipo de estudios que permite realizar. GRANFLOW-SIM es el primer aparato experimental en su tipo desarrollado y construido en México para el estudio y la simulación de diferentes tipos de flujos granulares observados en la naturaleza (tales como avalanchas, lahares y flujos de escombros) a escala y en tiempo real, por lo que emplea gran cantidad de sensores y cámaras de video de alta velocidad, repartidos a lo largo de las diferentes secciones que lo componen. La comprensión de los eventos precursores y detonadores, así como la manera en que estos flujos se desarrollan a lo largo de las pendientes volcánicas, es de fundamental importancia para prevenir desastres relacionados con ellos, salvaguardando así vidas e infraestructura. Una de las maneras en que estos fenómenos pueden ser estudiados y modelados es a través de aparatos experimentales que sean capaces de reproducirlos a escala. Estos aparatos experimentales deben permitir la medición del mayor número posible de variables involucradas durante el desarrollo del flujo, reproduciendo las características de laderas, barrancas naturales, condiciones de sedimentación y hasta la rugosidad del terreno. Puesto que el material que conforma la avalancha, se desplaza a gran velocidad, la medición de sus características en tiempo real implica un reto tecnológico, tanto en eventos observados en el campo como en los simuladores, requiriendo mucha velocidad para la captura de los datos y gran capacidad de almacenamiento de la información.Palabras clave: experimentos a gran escala, flujos granulares, avalanchas, flujos de escombros, flujos piroclásticos. Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.