Specific membrane lipid composition is crucial for optimized structural and functional organization of biological membranes. Cardiolipin is a unique phospholipid and important component of the inner mitochondrial membrane. It is involved in energy metabolism, inner mitochondrial membrane transport, regulation of multiple metabolic reactions and apoptotic cell death. The physico-chemical properties of cardiolipin have been studied extensively but despite all these efforts there is still lingering controversy regarding the ionization of the two phosphate groups of cardiolipin. Results obtained in the 1990s and early 2000s suggested that cardiolipin has two disparate pKa values where one of the protons was proposed to be stabilized by an intramolecular hydrogen bond. This has led to extensive speculations on the roles of these two putative ionization states of cardiolipin in mitochondria. More recently the notion of two pKa values has been challenged and rejected by several groups. These studies relied on external measurements of proton adsorption or electrophoretic mobility of membranes but did not take into account the low pH phase behavior and chemical stability of cardiolipin. Here we used 31P NMR to show that in the physiologically relevant membrane phospholipid environment, cardiolipin carries two negative charges at physiological pH. We additionally demonstrate the pH dependent phase behavior and chemical stability of cardiolipin containing membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.