Autosomal dominant hypercholesterolemia (ADH; OMIM144400), a risk factor for coronary heart disease, is characterized by an increase in low-density lipoprotein cholesterol levels that is associated with mutations in the genes LDLR (encoding low-density lipoprotein receptor) or APOB (encoding apolipoprotein B). We mapped a third locus associated with ADH, HCHOLA3 at 1p32, and now report two mutations in the gene PCSK9 (encoding proprotein convertase subtilisin/kexin type 9) that cause ADH. PCSK9 encodes NARC-1 (neural apoptosis regulated convertase), a newly identified human subtilase that is highly expressed in the liver and contributes to cholesterol homeostasis.
Seven secretory mammalian kexin-like subtilases have been identified that cleave a variety of precursor proteins at monobasic and dibasic residues. The recently characterized pyrolysin-like subtilase SKI-1 cleaves proproteins at nonbasic residues. In this work we describe the properties of a proteinase K-like subtilase, neural apoptosis-regulated convertase 1 (NARC-1), representing the ninth member of the secretory subtilase family. Biosynthetic and microsequencing analyses of WT and mutant enzyme revealed that human and mouse pro-NARC-1 are autocatalytically and intramolecularly processed into NARC-1 at the (Y,I)VV(V,L)(L,M)2 motif, a site that is representative of its enzymic specificity. In vitro peptide processing studies and͞or Ala substitutions of the P1-P5 sites suggested that hydrophobic͞aliphatic residues are more critical at P1, P3, and P5 than at P2 or P4. NARC-1 expression is highest in neuroepithelioma SK-N-MCIXC, hepatic BRL-3A, and in colon carcinoma LoVo-C5 cell lines. In situ hybridization and Northern blot analyses of NARC-1 expression during development in the adult and after partial hepatectomy revealed that it is expressed in cells that have the capacity to proliferate and differentiate. These include hepatocytes, kidney mesenchymal cells, intestinal ileum, and colon epithelia as well as embryonic brain telencephalon neurons. Accordingly, transfection of NARC-1 in primary cultures of embryonic day 13.5 telencephalon cells led to enhanced recruitment of undifferentiated neural progenitor cells into the neuronal lineage, suggesting that NARC-1 is implicated in the differentiation of cortical neurons.cleavage specificity ͉ hypercholesterolemia ͉ neurogenesis ͉ hepatogenesis
The discovery of autosomal dominant hypercholesterolemic patients with mutations in the PCSK9 gene, encoding the proprotein convertase NARC-1, resulting in the missense mutations suggested a role in low density lipoprotein (LDL) metabolism. We show that the endoplasmic reticulum-localized proNARC-1 to NARC-1 zymogen conversion is Ca 2؉ -independent and that within the zymogen autocatalytic processing site SSVFAQ2SIP Val at P4 and Pro at P3 are critical. The S127R and D374Y mutations result in ϳ50 -60% and >98% decrease in zymogen processing, respectively. In contrast, the double [D374Y ؉ N157K], F216L, and R218S natural mutants resulted in normal zymogen processing. The cell surface LDL receptor (LDLR) levels are reduced by 35% in lymphoblasts of S127R patients. The LDLR levels are also reduced in stable HepG2 cells overexpressing NARC-1 or its natural mutant S127R, and this reduction is abrogated in the presence of 5 mM ammonium chloride, suggesting that overexpression of NARC-1 increases the turnover rate of the LDLR. Adenoviral expression of wild type human NARC-1 in mice resulted in a maximal ϳ9-fold increase in circulating LDL cholesterol, while in LDLR(؊/؊) mice a delayed ϳ2-fold increase in LDL cholesterol was observed. In conclusion, NARC-1 seems to affect both the level of LDLR and that of circulating apoB-containing lipoproteins in an LDLR-dependent and -independent fashion.The mammalian proprotein convertases constitute a family of 9 serine proteinases related to bacterial subtilisin. These include the 7 basic amino acid-specific convertases known as PC1/PC3, PC2, furin, PC4, PACE4, PC5/PC6, PC7/LPS (1, 2) and the two enzymes cleaving at nonbasic residues SKI-1/S1P (3, 4) and NARC-1/PCSK9 (5). These proteases are implicated in the limited proteolysis of precursors of secretory proteins that regulate a variety of cellular functions, including cellular growth, adhesion, differentiation, cell to cell communications, and endocrine/paracrine functions (6, 7). Published gene knockout analyses (reviewed in Ref. 8) revealed that only furin (9) and SKI-1/S1P (10) are embryonic lethal. So far, nothing is known about the phenotype consequences of NARC-1 1 knockout in mice. The cDNA of the enzyme NARC-1 was cloned during pharmaceutical screening of mRNAs up-regulated following induction of neural apoptosis by serum withdrawal, and the encoded protein was called "neural apoptosis regulated convertase 1" (NARC-1) (11). We characterized this enzyme, and we showed that it is highly expressed in liver and small intestine and that specific mutations in the prosegment of NARC-1 completely abrogated its autocatalytic processing (5). We further showed that overexpression of NARC-1 enhances neurogenesis of progenitor brain telencephalic cells. The sustained expression of NARC-1 in liver and small intestine and its transient expression in telencephalon, kidney, and cerebellum beg for the identification of its physiological substrates, which are still unknown.Human genetic point mutations resulting in pathology have been rep...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.