To characterize the platelet receptor sites and the platelet metabolic pathways involved in tumor-cell-induced platelet aggregation, we have used a homologous system consisting of human platelets and 2 tumor cell lines of human origin, which activate platelets through different mechanisms. Preincubation of platelets with an MAb against platelet glycoprotein Ib partially blocked tumor-cell-induced platelet aggregation, and preincubation of platelets with an MAb against the glycoprotein complex GPIIb/IIIa totally blocked the aggregation induced by the 2 tumor-cell lines. No inhibitory effect was found when platelets were treated with PAF-receptor antagonists or with specific peptides which block the platelet sites involved in bacterially induced platelet aggregation. Compounds which raised intra-platelet cAMP levels inhibited tumor-cell-induced platelet aggregation in a dose-related manner. Inhibition of cyclo-oxygenase by aspirin which blocked TxB2 formation by platelets did not inhibit platelet aggregation induced by tumor cells whereas the BW755 compound which inhibits cyclo- and lipoxygenase blocked platelet aggregation. These results demonstrate that tumor-cell-induced platelet aggregation is a glycoprotein-dependent and a lipoxygenase-associated phenomenon.
SummaryTiclopidine (250 mg twice daily) was administered to human volunteers for seven days and the response of their heparinized platelet-rich plasma to SKNMC (ADP-dependent) human neuroblastoma cells was examined. The first wave of platelet aggregation, characteristic of ADP-dependent human tumor cell lines, was completely abolished but was replaced by a lag period prior to the onset of aggregation. In the Baumgartner perfusion apparatus there was a marked inhibition in the thrombus generated by the presence of SKNMC cells with a concomitant increase in the percentage of surface coverage. These results suggest that the administration of ticlopidine could be useful to prevent some of the steps of metastatic dissemination in which activated platelets may play a role.
SummaryBlood platelets are thought to be involved in certain aspects of malignant dissemination. To study the role of platelets in tumor cell adherence to vascular endothelium we performed studies under static and flow conditions, measuring tumor cell adhesion in the absence or presence of platelets. We used highly metastatic human adenocarcinoma cells of the lung, cultured human umbilical vein endothelial cells (ECs) and extracellular matrices (ECM) prepared from confluent EC monolayers. Our results indicated that under static conditions platelets do not significantly increase tumor cell adhesion to either intact ECs or to exposed ECM. Conversely, the studies performed under flow conditions using the flat chamber perfusion system indicated that the presence of 2 × 105 pl/μl in the perfusate significantly increased the number of tumor cells adhered to ECM, and that this effect was shear rate dependent. The maximal values of tumor cell adhesion were obtained, in presence of platelets, at a shear rate of 1,300 sec-1. Furthermore, our results with ASA-treated platelets suggest that the role of platelets in enhancing tumor cell adhesion to ECM is independent of the activation of the platelet cyclooxygenase pathway.
We and others reported that endothelial cells (ECs) convert linoleic acid into 13-hydroxyoctadecadienoic acid (13-H0DE) under basal conditions, and arachidonic acid into 15-hydroxyeicosatet-raenoic acid (15-HETE) following stimulation (1,2). We also reported that lipoxygenase metabolism influenced platelet (PLT) interactions with ECs, tumor cells (TCs) and extracellular matrix (BM) (1,3,4). Thus, we performed studies to determine i) if TCs also produce 13-H0DE and HETEs, and ii) the effect of TC and EC 13-H0DE and HETEs synthesis on TC/EC adhesion. We measured i) the ratios of 13-H0DE:HETE in 5TC lines, under basal and stimulated conditions, in metastatic and non-metastatic TCs of the same cell line, and TCs treated with salicylate (SAL) or dipyridamole (DIP), and ii) their relationships with TC adhesion to ECs and BM. 13-H0DE and HETEs were assayed by HPLC. TC adhesion was assayed as the # radiolabelled TCs adherent to ECs or BM. cAMP was assayed by RIA. Under basal conditions, TCs produced 13-H0DE and HETEs, the intracellular ratio of which markedly affected their adhesivity; e.g. the least adhesive TC (U87MG glioblastoma) produced 21Xs more 13-H0DE than HETE’s, while a more adhesive TC (A549, adenocarcinoma) produced 4Xs more HETEs than 13-H0DE. Non-metastatic TCs preferentially produced 13-H0DE while metastatic TCs of the same cell line, produced HETEs. Stimulation of TCs or ECs decreased 13-H0DE, and increased HETE synthesis and TC/EC adhesion. Inhibiting intracellular 13-H0DE synthesis in either TCs or EC (SAL RX) enhanced TC/EC and TC/BM adhesion. Enhancing 13-H0DE synthesis by elevating cAMP (DIP RX) inhibited TC/EC and TC/BM adhesion. We conclude that 1) in vitro TCs produce 13-H0DE and HETEs, 2) the ratio of 13-H0DE:HETEs in TCs and ECs affects their adhesivity; and 3) the ratio of intracellular 13-H0DE:HETEs depends upon cAMP. This suggests that 13-H0DE:HETE ratios in TCs and ECs influence the adhesion process in the pathogenesis of thrombosis and metastasis in vivo. (1) Buchanan et al, JBC 30:1985. (2) Hopkins et al, JBC 29:1984. (3) Bastida et al, Int. J. Cane. 1987. (4) Buchanan et al, Prost. Leuk. Med., 1986.
The interaction of malignant cells with blood-vessel endothelial cells and their underlying basement membrane is an important step in the development of secondary metastases. We investigated the interactions of highly metastatic human tumor cells, the A-549 adenocarcinoma of the lung, with cultured endothelial cells (EC) and their extracellular matrix (ECM). We studied the adhesion patterns of the A-549 tumor cells to EC and ECM under static and flow conditions. Our results provide evidence that tumor-cell adhesion depends not only on the characteristics of the tumor cells themselves, but also on the properties of the EC and ECM. Our results also indicate that tumor-cell adhesion to ECM is shear-rate-dependent, and that it is partially modulated by fibronectin. Moreover, our results suggest that the arg-gly-asp (RGD) common adhesion receptor site is also involved in the adhesion of the A-549 cells to EC and ECM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.