High-intensity, "pink" beam from an undulator was used in conjunction with microfabricated rapid-fluid mixing devices to monitor the early events in protein folding with time resolved small angle x-ray scattering. This Letter describes recent work on the protein bovine beta-lactoglobulin where collapse from an expanded to a compact set of states was directly observed on the millisecond time scale. The role of chain collapse, one of the initial stages of protein folding, is not currently understood. The characterization of transient, compact states is vital in assessing the validity of theories and models of the folding process.
A method for reducing time sequences of raw scattering images to intensity time-autocorrelation functions is presented. The procedure is based on the use of a charge coupled device ͑CCD͒ area detector, and optimized for operating in the regime of short data batches. Its application to x-ray photon correlation spectroscopy ͑XPCS͒ measurements is described in detail. Using a slow-scan CCD, we explain how to achieve data acquisition on a 30 ms or faster time scale, while simultaneously acquiring data from many coherence areas in parallel. The statistical uncertainties of the acquired XPCS data are quantified experimentally, and compared to the theoretically expected noise levels of the correlation functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.