SUMMARY Nutrient amino acid transporters (NATs, subfamily of sodium neurotransmitter symporter family SNF, a.k.a. SLC6) represent a set of phylogenetically and functionally related transport proteins, which perform intracellular absorption of neutral, predominantly essential amino acids. Functions of NATs appear to be critical for the development and survival in organisms. However, mechanisms of specific and synergetic action of various NAT members in the amino acid transport network are virtually unexplored. A new transporter, agNAT8, was cloned from the malaria vector mosquito Anopheles gambiae (SS). Upon heterologous expression in Xenopus oocytes it performs high-capacity, sodium-coupled (2:1)uptake of nutrients with a strong preference for aromatic catechol-branched substrates, especially phenylalanine and its derivatives tyrosine and L-DOPA,but not catecholamines. It represents a previously unknown SNF phenotype, and also appears to be the first sodium-dependent B0 type transporter with a narrow selectivity for essential precursors of catecholamine synthesis pathways. It is strongly and specifically transcribed in absorptive and secretory parts of the larval alimentary canal and specific populations of central and peripheral neurons of visual-, chemo- and mechano-sensory afferents. We have identified a new SNF transporter with previously unknown phenotype and showed its important role in the accumulation and redistribution of aromatic substrates. Our results strongly suggest that agNAT8 is an important, if not the major, provider of an essential catechol group in the synthesis of catecholamines for neurochemical signaling as well as ecdysozoan melanization and sclerotization pathways, which may include cuticle hardening/coloring, wound curing, oogenesis, immune responses and melanization of pathogens.
The dorsal side-up body orientation in quadrupeds is maintained by a postural system that is driven by sensory feedback signals. The spinal cord, brainstem, and cerebellum play essential roles in postural control, whereas the role of the forebrain is unclear. In the present study we investigated whether the motor cortex is involved in maintenance of the dorsal side-up body orientation. We recorded activity of neurons in the motor cortex in awake rabbits while animals maintained balance on a platform periodically tilting in the frontal plane. The tilts evoked postural corrections, i.e., extension of the limbs on the side moving down and flexion on the opposite side. Because of these limb movements, rabbits maintained body orientation close to the dorsal side up. Four classes of efferent neurons were studied: descending corticofugal neurons of layer V (CF5s), those of layer VI (CF6s), corticocortical neurons with ipsilateral projection (CCIs), and those with contralateral projection (CCCs). One class of inhibitory interneurons [suspected inhibitory neurons (SINs)] was also investigated. CF5 neurons and SINs were strongly active during postural corrections. In most of these neurons, a clear-cut modulation of discharge in the rhythm of tilting was observed. This finding suggests that the motor cortex is involved in postural control. In contrast to CF5 neurons, other classes of efferent neurons (CCI, CCC, CF6) were much less active during postural corrections. This suggests that corticocortical interactions, both within a hemisphere (mediated by CCIs) and between hemispheres (mediated by CCCs), as well as corticothalamic interactions via CF6 neurons are not essential for motor coordination during postural corrections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.