The autonomic nervous system (ANS) plays an important role in the human response to various internal and external stimuli, which can modify homeostasis, and exerts a tight control on essential functions such as circulation, respiration, thermoregulation and hormonal secretion. ANS dysfunction may complicate the perioperative course in the surgical patient undergoing anesthesia, increasing morbidity and mortality, and, therefore, it should be considered as an additional risk factor during pre-operative evaluation. Furthermore, ANS dysfunction may complicate the clinical course of critically ill patients admitted to intensive care units, in the case of trauma, sepsis, neurologic disorders and cardiovascular diseases, and its occurrence adversely affects the outcome. In the care of these patients, the assessment of autonomic function may provide useful information concerning pathophysiology, risk stratification, early prognosis prediction and treatment strategies. Given the role of ANS in the maintenance of systemic homeostasis, anesthesiologists and intensivists should recognize as critical the evaluation of ANS function. Measurement of heart rate variability (HRV) is an easily accessible window into autonomic activity. It is a low-cost, non-invasive and simple to perform method reflecting the balance of the ANS regulation of the heart rate and offers the opportunity to detect the presence of autonomic neuropathy complicating several illnesses. The present review provides anesthesiologists and intensivists with a comprehensive summary of the possible clinical implications of HRV measurements, suggesting that autonomic dysfunction testing could potentially represent a diagnostic and prognostic tool in the care of patients both in the perioperative setting as well as in the critical care arena.
SummaryWith longevity, postoperative cognitive decline in the elderly has emerged as a major health concern for which several factors have been implicated, one of the most recent being the role of anaesthetics. Interactions of anaesthetic agents and different targets have been studied at the molecular, cellular and structural anatomical levels. Recent in vitro nuclear magnetic resonance spectroscopy studies have shown that several anaesthetics act on the oligomerisation of amyloid b peptide. Uncontrolled production, oligomerisation and deposition of amyloid b peptide, with subsequent development of amyloid plaques,
Alzheimer's disease (AD) is associated with a loss of cholinergic neurons resulting in profound memory disturbances and irreversible impairment of cognitive function. The central cholinergic system is involved in the action of general anaesthetic agents. Anaesthetic modulation of cholinergic transmission has profound effects on brain function via a cascade of synaptic and postsynaptic events by binding both nicotinic and muscarinic receptors. During general anaesthesia, decrease in acetylcholine release and depression of cholinergic transmission facilitates the desirable effects of general anaesthetics, such as loss of consciousness, pain, voluntary movements and memory. From this point of view, patients with AD, characterized by a compromised neuronal transmission, represent particular cases in which the choice of anaesthesia drugs may have a negative effect on the postoperative outcome. A future challenge may be the identification of brain targets of general anaesthetics which do not expose patients to postoperative cognitive dysfunction, nor interfere with prognosis of brain degenerative disease.
Propofol-remifentanil anaesthesia induced a dose-dependent low-flow state with preserved cerebral autoregulation, whereas sevoflurane at high doses provided a certain degree of luxury perfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.