The concept of evolvability, that is the capacity to produce heritable and adaptive phenotypic variation, is crucial in the current understanding of evolution. However, while its meaning is intuitive, there is no consensus on how to quantitatively measure it. As a consequence, in evolutionary robotics, it is hard to evaluate the interplay between evolvability and fitness and its dependency on key factors like the evolutionary algorithm (EA) or the representation of the individuals. Here, we propose to use MAP-Elites, a well-established Quality Diversity EA, as a support structure for measuring evolvability and for highlighting its interplay with fitness. We map the solutions generated during the evolutionary process to a MAP-Elites-like grid and then visualize their fitness and evolvability as maps. This procedures does not affect the EA execution and can hence be applied to any EA: it only requires to have two descriptors for the solutions that can be used to meaningfully characterize them. We apply this general methodology to the case of Voxel-based Soft Robots (VSR), a kind of modular robots with a body composed of uniform elements whose volume is individually varied by the robot brain. Namely, we optimize the robots for the task of locomotion using evolutionary computation. We consider four representations, i.e., ways of transforming a genotype into a robot, two for the brain only and two for both body and brain of the VSR, and two EAs (MAP-Elites and a simple evolutionary strategy) and examine the evolvability and fitness maps. The experiments suggest that our methodology permits us to discover interesting patterns in the maps: fitness maps appear to depend more on the representation of the solution, whereas evolvability maps appear to depend more on the EA. As an aside, we find that MAP-Elites is particularly effective in the simultaneous evolution of the body and the brain of Voxel-based Soft Robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.