Near-infrared laser light radiation (810 nm) induced long-term conformational transitions of red blood cell membrane which were related to the changes in the structural states of both erythrocyte membrane proteins and lipid bilayer and which manifested themselves as changes in fluorescent parameters of erythrocyte membranes and lipid bilayer fluidity. This resulted in the modulation of membrane functional properties: changes in the activity of membrane ion pumps and, thus, changes in membrane ion flows.
The aim of our investigation was to study the red blood cell (RBC) membrane effects of NaNO(2)-induced oxidative stress. Hyperpolarization of erythrocyte membranes and an increase in membrane rigidity have been shown as a result of RBC oxidation by sodium nitrite. These membrane changes preceded reduced glutathione depletion and were observed simultaneously with methemoglobin (metHb) formation. Changes of the glutathione pool (total and reduced glutathione, and mixed protein-glutathione disulfides) during nitrite-induced erythrocyte oxidation have been demonstrated. The rates of intracellular oxyhemoglobin and GSH oxidation highly increased as pH decreased in the range of 7.5-6.5. The activation energy of intracellular metHb formation obtained from the temperature dependence of the rate of HbO(2) oxidation in RBC was equal to 16.7+/-1.6 kJ/mol in comparison with 12.8+/-1.5 kJ/mol calculated for metHb formation in hemolysates. It was found that anion exchange protein (band 3 protein) of the erythrocyte membrane does not participate significantly in the transport of nitrite ions into the erythrocytes as band 3 inhibitors (DIDS, SITS) did not decrease the intracellular HbO(2) oxidation by extracellular nitrite.
Melatonin is an indolamine, mainly secreted by the pineal gland into the blood of mammalian species. The potential for protective effects of melatonin on carbon tetrachloride (CCl(4))-induced acute liver injury in rats was investigated in this work. CCl(4) exerts its toxic effects by generation of free radicals; it was intragastrically administered to male Wistar rats (4 g kg(-1) body weight) at 20 h before the animals were decapitated. Melatonin (15 mg kg(-1) body weight) was administered intraperitoneally three times: 30 min before and at 2 and 4 h after CCl(4) injection. Rats injected with CCl(4) alone showed significant lipid and hydropic dystrophy of the liver, massive necrosis of hepatocytes, marked increases in free and conjugated bilirubin levels, elevation of hepatic enzymes (alanine aminotransferase and aspartate aminotransferase) in plasma, as well as NO accumulation in liver and in blood. Melatonin administered at a pharmacological dose diminished the toxic effects of CCl(4). Thus it decreased both the structural and functional injury of hepatocytes and clearly exerted hepatoprotective effects. Melatonin administration also reduced CCl(4)-induced NO generation. These findings suggest that the effect of melatonin on CCl(4)-induced acute liver injury depends on the antioxidant action of melatonin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.