A novel Dy-complex formulated as {[Dy2Ba(α-C4H3OCOO)8·(H2O)4]·2H2O}n, {Dy2Ba(α-fur)8}n, has been synthesized, structurally characterized, and magnetically and thermally investigated as a function of field and temperature, down to 85 mK. The α-furoate ligands consolidate 1D zig-zag chains formed by Dy2 dimers separated by Ba ions. Ab initio calculations were used to determine the easy anisotropy axis direction, the gyromagnetic tensor components and the energy levels of each Dy. The heat capacity and susceptibility measurements allowed us to conclude that intradimer and interdimer interactions are ferromagnetic and of the same order, J'/k(B) ≈ J''/k(B) = +0.55 K. In the absence of an applied magnetic field, the dynamic relaxation of the magnetization occurs through the fast (τ(T) ~ 10(-5) s) spin-reversal of each of the individual Dys through a quantum tunneling (QT) process. A long-range 3D ordered state is achieved at T(N) = 0.25 K, in which the ferromagnetically coupled zig-zag chains (J'/k(B) ≈ J''/k(B) = +0.528(1) K) running along the c-axis are antiferromagnetically coupled to the adjacent chains (J'''/k(B) = -0.021(1) K). Critical slowing down of the QT time constant is observed when the temperature approaches T(N). Under the application of a magnetic field, the QT relaxation is replaced by an Orbach process (with energy barrier U/k(B) = 68 K and τ0 ~ 10(-9) s at H = 2 kOe) and a very slow (τ(s) ∼ 0.2 s) relaxation process. We propose and demonstrate the proof of concept of a spintronic device, in which two different relaxation rates can be selected, and on/off switched by magnetic field biasing. The dynamical behavior of this compound is compared with another furoate to discuss the effect of competitive interactions.
The intramolecular exchange interactions within the single-molecule magnet (SMM) "butterfly" molecule [Fe 3 Ln(μ 3 -O) 2 (CCl 3 COO) 8 (H 2 O)(THF) 3 ], where Ln(III) represents a lanthanide cation, are determined in a combined experimental [x-ray magnetic circular dichroism (XMCD) and vibrating sample magnetometer (VSM)] and theoretical work. Compounds with Ln = Gd and Dy, which represent extreme cases where the rare earth presents single-ion isotropic and uniaxial anisotropy, on one hand, and with Ln = Lu and Y(III) as pseudolanthanide substitutions that supply a nonmagnetic Ln reference case, on the other hand, are studied. The Dy single-ion uniaxial anisotropy is estimated from ab initio calculations. Low-temperature (T 2.5 K) hard x-ray XMCD at the Ln L 2,3 edges and VSM measurements as a function of the field indicate that the Ln moment dominates the polarization of the molecule by the applied field. Within the {Fe 3 LnO 2 } cluster the Ln-Fe 3 subcluster interaction is determined to be antiferromagnetic in both Dy and Gd compounds, with values J Dy-Fe 3 = −0.4 K and J Gd-Fe 3 = −0.25 K, by fitting to spin Hamiltonian simulations that consider the competing effects of intracluster interactions and the external applied magnetic field. In the uniaxial anisotropic {Fe 3 DyO 2 } case, a field-induced reorientation of the Fe 3 and Dy spins from an antiparallel to a parallel orientation takes place at a threshold field (μ 0 H = 4 T). In contrast, in isotropic {Fe 3 GdO 2 } this reorientation does not occur.
The morphology and the quantitative composition of the Fe-Si interface layer forming at each Fe layer of a (Fe/Si)3 multilayer have been determined by means of conversion electron Mössbauer spectroscopy (CEMS) and high-resolution transmission electron microscopy (HRTEM). For the CEMS measurements, each layer was selected by depositing the Mössbauer active 57Fe isotope with 95% enrichment. Samples with Fe layers of nominal thickness dFe = 2.6 nm and Si spacers of dSi = 1.5 nm were prepared by thermal evaporation onto a GaAs(001) substrate with an intermediate Ag(001) buffer layer. HRTEM images showed that Si layers grow amorphous and the epitaxial growth of the Fe is good only for the first deposited layer. The CEMS spectra show that at all Fe/Si and Si/Fe interfaces a paramagnetic c-Fe1−xSi phase is formed, which contains 16% of the nominal Fe deposited in the Fe layer. The bottom Fe layer, which is in contact with the Ag buffer, also contains α-Fe and an Fe1−xSix alloy that cannot be attributed to a single phase. In contrast, the other two layers only comprise an Fe1−xSix alloy with a Si concentration of ≃0.15, but no α-Fe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.