Counting craters in remotely sensed images is the only tool that provides relative dating of remote planetary surfaces. Surveying craters requires counting a large amount of small subkilometer craters, which calls for highly efficient automatic crater detection. In this article, we present an integrated framework on autodetection of subkilometer craters with boosting and transfer learning. The framework contains three key components. First, we utilize mathematical morphology to efficiently identify crater candidates, the regions of an image that can potentially contain craters. Only those regions occupying relatively small portions of the original image are the subjects of further processing. Second, we extract and select image texture features, in combination with supervised boosting ensemble learning algorithms, to accurately classify crater candidates into craters and noncraters. Third, we integrate transfer learning into boosting, to enhance detection performance in the regions where surface morphology differs from what is characterized by the training set. Our framework is evaluated on a large test image of 37, 500 × 56, 250 m 2 on Mars, which exhibits a heavily cratered Martian terrain characterized by nonuniform surface morphology. Empirical studies demonstrate that the proposed crater detection framework can achieve an F1 score above 0.85, a significant improvement over the other crater detection algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.