A cryogenic apparatus is described that enables a new experiment, nEDM@SNS, with a major improvement in sensitivity compared to the existing limit in the search for a neutron Electric Dipole Moment (EDM). This apparatus uses superfluid 4 He to produce a high density of Ultra-Cold Neutrons (UCN) which are contained in a suitably coated pair of measurement cells. The experiment, to be operated at the Spallation Neutron Source at Oak Ridge National Laboratory, uses polarized 3 He from an Atomic Beam Source injected into the superfluid 4 He and transported to the measurement cells where it serves as a co-magnetometer. The superfluid 4 He is also used as an insulating medium allowing significantly higher electric fields, compared to previous experiments, to be maintained across the measurement cells. These features provide an ultimate statistical uncertainty for the EDM of 2 − 3 × 10 −28 e-cm, with anticipated systematic uncertainties below this level.
The NPDGamma collaboration reports results from the first phase of a measurement of the parity violating up-down asymmetry Aγ with respect to the neutron spin direction of γ-rays emitted in the reaction n + p → d + γ using the capture of polarized cold neutrons on the protons in a liquid parahydrogen target. One expects parity-odd effects in the hadronic weak interaction (HWI) between nucleons to be induced by the weak interaction between quarks. Aγ in n + p → d + γ is dominated by a ∆I = 1, 3 S1 − 3 P1 parity-odd transition amplitude in the n-p system. The first phase of the measurement was completed at the Los Alamos Neutron Science Center spallation source (LANSCE) with the result Aγ = (−1.2 ± 2.1 stat. ± 0.2 sys.) × 10 −7 . We also report the first measurement of an upper limit for the parity allowed left right asymmetry in this reaction, with the result Aγ,LR = (−1.8 ± 1.9 stat. ± 0.2 sys.) × 10 −7 . In this paper we give a detailed report on the theoretical background, experimental setup, measurements, extraction of the parity-odd and parity-allowed asymmetries, analysis of potential systematic effects, and the LANSCE results. The asymmetry has an estimated size of 5 × 10 −8 and the aim of the NPDGamma collaboration is to measure it to 1 × 10 −8 . The second phase of the measurement will be performed at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory.
We report the first observation of the parity-violating gamma-ray asymmetry A np γ in neutronproton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. A np γ isolates the ∆I = 1, 3 S1 → 3 P1 component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless effective field theory. We measured A np γ = (−3.0 ± 1.4(stat.) ± 0.2(sys.)) × 10 −8 , which implies a DDH weak πN N coupling of h 1 π = (2.6 ± 1.2(stat.) ± 0.2(sys.)) × 10 −7 and a pionless EFT constant of C 3 S 1 → 3 P 1 /C0 = (−7.4 ± 3.5(stat.) ± 0.5(sys.)) × 10 −11 MeV −1 . We describe the experiment, data analysis, systematic uncertainties, and implications of the result.
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 meV and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra non-equilibrium component of orthohydrogen. Liquid parahydrogen is also a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.