In recent years, the interest on modelling activated sludge (AS) systems by means of Computational Fluid Dynamics (CFD) techniques has significantly increased. This work shows a successful case study combining CFD hydrodynamics and biokinetic modelling. The hydrodynamics is analysed by using the Reynolds-averaged Navier-Stokes equation for incompressible non-Newtonian fluids and SST turbulence model. Biokinetics has been included into the CFD as transport equations with source and sink terms defined by the Activated Sludge Model nº1 (ASM1). Furthermore, a strategy for reducing the computational cost while maintaining accuracy of the results of these calculations has been proposed. This strategy is based on a two-step solver configuration and the definition of a variable timestep scheme. The resulting CFD-ASM approach permits a proper evaluation of denitrification in the anoxic tanks as well as the reproduction of nitrate and readily biodegradable substrate distributions. To demonstrate the strength of the proposed CFD-ASM, it has been used to evaluate the operation of a full-scale AS system and optimize its performance through changes in the biological reactor anoxic zone. The original configuration has been retrofitted and modified after detecting intrinsic defects on the fluid behaviour within the tank. This study has been assessed by analysing hydrodynamics in detail and validating the simulation results with tracer tests and flow velocity measurements. Substantial variations on the Residence Time Distribution have been confirmed when modifying the internal elements of the tank configuration: the wall-bushing and the stirrer positioning. As a result of this work, an influential short circuiting was corrected improving hydrodynamics and increasing mean residence time, all favouring denitrification efficiency. Outcomes of this study show the benefit of CFD when applied to AS tanks.
This paper introduces the technical and economic viability of a new micro hydro installation solution designed to reduce the power consumption of a medium-sized wastewater treatment plant. The work analyses the hydroelectric potential of the plant and summarizes the turbine-generator design procedure performed to optimize the production. Results demonstrate the viability when energy produced is used for self-consumption.
The pressure for Water Resource Recovery Facilities (WRRF) operators to efficiently treat wastewater is greater than ever because of the water crisis, produced by the climate change effects and more restrictive regulations. Technicians and researchers need to evaluate WRRF performance to ensure maximum efficiency. For this purpose, numerical techniques, such as CFD, have been widely applied to the wastewater sector to model biological reactors and secondary settling tanks with high spatial and temporal accuracy. However, limitations such as complexity and learning curve prevent extending CFD usage among wastewater modeling experts. This paper presents HydroSludge, a framework that provides a series of tools that simplify the implementation of the processes and workflows in a WRRF. This work leverages HydroSludge to preprocess existing data, aid the meshing process, and perform CFD simulations. Its intuitive interface proves itself as an effective tool to increase the efficiency of wastewater treatment. Practitioner points This paper introduces a software platform specifically oriented to WRRF, named HydroSludge, which provides easy access to the most widespread and leading CFD simulation software, OpenFOAM. Hydrosludge is intended to be used by WRRF operators, bringing a more wizard‐like, automatic, and intuitive usage. Meshing assistance, submersible mixers, biological models, and distributed parallel computing are the most remarkable features included in HydroSludge. With the provided study cases, HydroSludge has proven to be a crucial tool for operators, managers, and researchers in WRRF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.