Substantially extending the life span of peat-and perlite-based growing media is a measure to increase the sustainability of soilless cultivation. The extraction of peat from pristine peatlands threatens these sensitive ecosystems and carbon sinks, meanwhile resulting in increased emissions of greenhouse gasses. Each batch of peat that is reused, results in a clear reduction in CO 2 emissions and a lower impact on the climate. After using growing media for one cultivation, we aim at reusing the spent material as growing medium for another crop. Spent peat and perlite based growing media from strawberry and cucumber cultivation were upcycled after steam treatment. We tested the effectiveness of steaming to reduce phytosanitary risks. The hygienisation efficiency of the steam treatment was confirmed: plant pathogenic fungi, larvae of vine weevils and weed seeds added or already present before the process were killed by the steam treatment. As the upcycled spent growing medium already contained high nutrient levels, the fertilizer application in the reused growing medium should be reduced, especially for P and K. Five indicators for assessing stability of the materials were used: CO 2 flux measurements, oxygen uptake rate (OUR), biodegradation potential, mineral N content and risk for N immobilization. The spent growing media had a low decomposition rate and the release of nutrients in a leaching experiment was lower than for a fertilized peat-based growing medium, being a reference blend for open field cultivated Chrysanthemum. N mineralisation and P uptake were tested in an incubation and pot trial, respectively, and the upcycled spent growing medium was found to be an important source of plant-available K and P. Steam treatment did not severely affect the microbial biomass and diversity of the spent growing media. Blending the steam-treated spent media with other materials or inoculating by a commercially available biocontrol fungus also had a limited effect, indicating that newly introduced microorganisms do not easily establish in steamed-treated spent growing media (SSGM). Acidification of the SSGM was achieved by a low dose of elemental S. The steam-treated growing medium was tested for growing Chrysanthemum cuttings and plantlets. Spent growing media were not able to supply sufficient mineral N, but the stored amounts of P and K in the media were sufficiently plant available for optimal crop growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.