ElsevierAcevedo Juárez, B.; Camiña, C.; Corona, JE.; Borrás Falomir, L.; Barat Baviera, R. (2015). The metabolic versatility of PAOs as an opportunity to obtain a highly P-enriched stream for further P-recovery. Chemical Engineering Journal. 270:459-467. doi:10.1016/j.cej.2015
Nutrient recovery technologies are rapidly expanding due to the need for the appropriate recycling of key elements from waste resources in order to move towards a truly sustainable modern society based on the Circular Economy.Nutrient recycling is a promising strategy for reducing the depletion of non-renewable resources and the environmental impact linked to their extraction and manufacture. However, nutrient recovery technologies are not yet fully mature, as further research is needed to optimize process efficiency and enhance their commercial applicability. This paper reviews state-of-the-art of nutrient recovery, focusing on frontier technological advances and economic and environmental innovation perspectives. The potentials and limitations of different technologies are discussed, covering systems based on membranes, photosynthesis, crystallization and other physical and biological nutrient recovery systems (e.g. incineration, composting, stripping and absorption and enhanced biological phosphorus recovery).
This research work proposes an innovative water resource recovery facility (WRRF) for the recovery of energy, nutrients and reclaimed water from sewage, which represents a promising approach towards enhanced circular economy scenarios. To this aim, anaerobic technology, microalgae cultivation, and membrane technology were combined in a dedicated platform. The proposed platform produces a high-quality solid- and coliform-free effluent that can be directly discharged to receiving water bodies identified as sensitive areas. Specifically, the content of organic matter, nitrogen and phosphorus in the effluent was 45 mg COD·L−1, 14.9 mg N·L−1 and 0.5 mg P·L−1, respectively. Harvested solar energy and carbon dioxide biofixation in the form of microalgae biomass allowed remarkable methane yields (399 STP L CH4·kg−1 CODinf) to be achieved, equivalent to theoretical electricity productions of around 0.52 kWh per m3 of wastewater entering the WRRF. Furthermore, 26.6% of total nitrogen influent load was recovered as ammonium sulphate, while nitrogen and phosphorus were recovered in the biosolids produced (650 ± 77 mg N·L−1 and 121.0 ± 7.2 mg P·L−1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.