The effect of quantum well (QW) number on performances of InGaN/GaN multiple-quantum-well light-emitting diodes has been investigated. It is observed that V-defects, originated from various InGaN well layers intercepted by threading dislocations (TDs), increase in density and averaged size with more periods of QWs, resulting in larger reverse-bias leakage current and lower emission efficiency of light-emitting diodes. Conductive atomic force microscopy measurements demonstrate that V-defects may preferentially capture carriers, subsequently enhance local current and nonradiative recombinations at associated TD lines, which suggest that TD lines with V-defects at vertex have larger influence on emission efficiency than those without V-defects.
The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, and therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.
InGaN-based blue-violet laser diodes (LDs) suffer from electron leakage into the p-type regions, which could be only partially alleviated by employing the electron blocking layer (EBL). Here, a thin undoped InGaN interlayer prior to EBL is proposed to create an additional forbidden energy range above the natural conduction band edge, which further suppresses the electron leakage and thus improve the characteristics of LDs. Numerical device simulations reveal that when the proper composition and thickness of InGaN interlayer are chosen, the electron leakage could be efficiently eliminated without inducing any severe accumulation of electrons at the interlayer, resulting in a maximum output power of the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.