Bovine mastitis is one of the most deleterious diseases for dairy herds and is mainly caused by contagious and environmental bacterial pathogens. Among contagious bacteria, Staphylococcus aureus is the most prevalent, whereas the main environmental mastitis pathogens are Streptococcus uberis and Escherichia coli. Bovine lactoferrin (bLF) is an approximately 80-kDa glycoprotein present in milk that participates in the innate response of the mammary gland against bacterial infection. The objectives of the current study were to analyze potential changes in bLF milk concentration, which would constitute a response of the mammary gland toward mastitis induced by different etiologic agents, and to evaluate a possible relation between this response and pathogen susceptibility to bLF. Microbiology analysis and bLF quantification in milk from different bovine mammary gland quarters were performed. Infected quarters presented greater concentrations of bLF compared with those from microbiologically negative quarters. Analysis of individual pathogen contributions showed that most of this increase was attributable to Strep. uberis intra-mammary infection. The ability of mammary gland cells to synthesize bLF in response to Strep. uberis challenge was demonstrated by immunodetection of the protein in in vitro infection experiments. Susceptibility of Strep. uberis, E. coli, and Staph. aureus to the antimicrobial activity of bLF was determined by growth inhibition assays conducted with 4 different isolates of each species. Whereas Staph. aureus and E. coli were shown to be susceptible to this protein, Strep. uberis appeared to be resistant to the antimicrobial activity of bLF. Molecular typing of the 4 Strep. uberis isolates used throughout this study showed that this result was representative of the species and not exclusive of a particular strain. Results presented herein suggest that different bacteria species may elicit different mammary gland responses mediated by bLF secretion and that Strep. uberis has probably adapted to this immune reaction by developing resistance to bLF inhibitory action.
Bovine mastitis is one of the most economically deleterious diseases affecting dairy herds and results from an infection of the udder by pathogenic microorganisms such as Staphylococcus aureus, Streptococcus uberis, and Escherichia coli. The mammary gland is capable of preventing and combating bacterial infection by means of a complex network of innate and adaptive immune mechanisms. Lactoferrin is an 86-kDa protein with antibacterial activity that plays a role in the mammary gland's defense against infection. β-Lactoglobulin (β-LG) is an 18-kDa protein that is present in most mammals but is notably absent in humans, rodents, and lagomorphs. Different genetic variants of this protein exist, with β-LG A and β-LG B being the most common. In spite of being well studied, the biological function of β-LG is not thoroughly understood, and most noticeably, no reports exist on the effects of the native protein on bacterial growth. Hence, the objective of this study was to assess the potential antibacterial activity of β-LG against mastitis agents. To do this, we purified β-LG from normal bovine milk using a mild, nondenaturing method and performed in vitro growth inhibition assays with Staph. aureus, E. coli, and Strep. uberis. β-Lactoglobulin inhibited the growth of Staph. aureus and Strep. uberis but had no effect on E. coli. The antimicrobial activity against Staph. aureus and Strep. uberis was concentration dependent and was elicited by the intact protein because Tricine-sodium dodecyl sulfate-PAGE and analytical gel filtration chromatography did not reveal the presence of short degradation peptides. Analysis of the genetic variants of β-LG showed that β-LG A has higher inhibitory activity against Staph. aureus and Strep. uberis than β-LG B. Coincubation of β-LG and lactoferrin resulted in an augmented antibacterial activity against Staph. aureus, suggesting an additive effect of the proteins. This result, along with the proteins' complementary spectrum of action, suggests that β-LG and lactoferrin may complement each other in the mammary gland's defenses against bacterial infection.
The objective of the current study was to analyze the variations in lactoferrin (LF) concentrations in primiparous cows with intramammary infection and to study how the lactation stage affects these variations. In addition, we aimed to study the potential of the LF concentration in early lactation as a predictive factor for future infections. To accomplish this goal, a longitudinal analysis was performed for 96 primiparous cows. Milk samples were collected each month from individual quarters, and the LF concentration was determined for each sample. Criteria that included both somatic cell count (SCC) and a microbiological analysis were used to assess the health status of the quarters. Of the diseased quarters (SCC >200,000 or positive for pathogen isolation, or both), 62% corresponded to nonspecific mastitis (SCC >200,000 but microbiologically negative) and 25% corresponded to the category "presence of bacterial growth" (SCC <200,000 but microbiologically positive). Diseased quarters showed increased concentrations of LF compared with healthy quarters. However, this increase was greater during the first days of lactation compared with later periods. Kaplan-Meier analysis of time free of infection demonstrated that quarters with LF concentrations at early lactation (3-10d in milk) greater than 0.1mg/mL are more likely to become infected during the following lactation compared with quarters with lower LF concentrations in early lactation. The results support that LF plays a relevant role in combating intramammary infection, particularly during the first days of lactation. In addition, we present evidence of the potential use of LF as a predictive marker of future infections in the individual quarters of dairy heifers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.