Bovine mastitis is one of the most deleterious diseases for dairy herds and is mainly caused by contagious and environmental bacterial pathogens. Among contagious bacteria, Staphylococcus aureus is the most prevalent, whereas the main environmental mastitis pathogens are Streptococcus uberis and Escherichia coli. Bovine lactoferrin (bLF) is an approximately 80-kDa glycoprotein present in milk that participates in the innate response of the mammary gland against bacterial infection. The objectives of the current study were to analyze potential changes in bLF milk concentration, which would constitute a response of the mammary gland toward mastitis induced by different etiologic agents, and to evaluate a possible relation between this response and pathogen susceptibility to bLF. Microbiology analysis and bLF quantification in milk from different bovine mammary gland quarters were performed. Infected quarters presented greater concentrations of bLF compared with those from microbiologically negative quarters. Analysis of individual pathogen contributions showed that most of this increase was attributable to Strep. uberis intra-mammary infection. The ability of mammary gland cells to synthesize bLF in response to Strep. uberis challenge was demonstrated by immunodetection of the protein in in vitro infection experiments. Susceptibility of Strep. uberis, E. coli, and Staph. aureus to the antimicrobial activity of bLF was determined by growth inhibition assays conducted with 4 different isolates of each species. Whereas Staph. aureus and E. coli were shown to be susceptible to this protein, Strep. uberis appeared to be resistant to the antimicrobial activity of bLF. Molecular typing of the 4 Strep. uberis isolates used throughout this study showed that this result was representative of the species and not exclusive of a particular strain. Results presented herein suggest that different bacteria species may elicit different mammary gland responses mediated by bLF secretion and that Strep. uberis has probably adapted to this immune reaction by developing resistance to bLF inhibitory action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.