Stratospheric airships are lighter-than-air vehicles that work at an altitude of 20km in the lower calm portion of the stratosphere. They can be used as real-time surveillance platforms for environment monitoring and civil communication. Solar energy is the ideal power choice for long-endurance stratospheric airships. Attitude control is important for airships so that they can point at a target for observation or adjust the attitude to improve the output performance of solar panels. Stratospheric airships have a large volume and semi-flexible structure. The typical actuators used are aerodynamic surfaces, vectored thrust and ballonets. However, not all these actuators can work well under special working conditions, such as low density and low speed. In this study, moving-mass control is introduced to stratospheric airships because its control efficiency is independent of airspeed and atmospheric density. A nonlinear feedback controller based on generalised inverse with a nonlinear mapping module is designed to implement moving-mass control. Such a new station keeping scheme with moving masses is proposed for airships with different working situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.