Stratospheric airships are lighter-than-air vehicles that work at an altitude of 20km in the lower calm portion of the stratosphere. They can be used as real-time surveillance platforms for environment monitoring and civil communication. Solar energy is the ideal power choice for long-endurance stratospheric airships. Attitude control is important for airships so that they can point at a target for observation or adjust the attitude to improve the output performance of solar panels. Stratospheric airships have a large volume and semi-flexible structure. The typical actuators used are aerodynamic surfaces, vectored thrust and ballonets. However, not all these actuators can work well under special working conditions, such as low density and low speed. In this study, moving-mass control is introduced to stratospheric airships because its control efficiency is independent of airspeed and atmospheric density. A nonlinear feedback controller based on generalised inverse with a nonlinear mapping module is designed to implement moving-mass control. Such a new station keeping scheme with moving masses is proposed for airships with different working situations.
The problem of designing a controller for a multi-vectored propeller airship with independent amplitude and rate saturations is addressed. First, a linear Proportional-Integral-Derivative (PID) controller is introduced for position control without considering the input saturations. Then, two design methods are applied to the traditional PID control output to satisfy the independent amplitude and rate constraints: the nested saturated PID controller (N-PID) and the transformed PID controller (T-PID). The bounded magnitudes and rate outputs of the modified controllers are given. Simulation results showed both controllers have good tracking performance while satisfying independent amplitude and rate saturations. However, the transformed PID controller has the advantage of expressing explicitly the relationship of the actuator magnitude and rate saturations with the parameters of the transformed function such that the actuator saturations are suppressed by calculation but not by trial and error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.